References

  1. Ledford, Heidi. “Cancer: The Ras renaissance.” Nature 520.7547 (2015): 278-280.
  2. Matikas, Alexios et al. “Targeting KRAS mutated non-small cell lung cancer: A history of failures and a future of hope for a diverse entity.” Crit Rev Oncol Hematol 110 (2017): 1-12.
  3. Ostrem, Jonathan M., Shokat, Kevan M. “Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design.” Nat Rev Drug Discov 15.11 (2016): 771-785.
  4. Bos, Johannes L. “ras oncogenes in human cancer: a review.” Cancer Res 49.17 (1989): 4682-4689
  5. Simanshu, Dhirendra K. et al. “RAS proteins and their regulators in human disease.” Cell 170.1 (2017): 17-33.
  6. Beganoyic S. CLINICAL SIGNIFICANCE OF THE KRAS MUTATION. Bosn J Basic Med Sci. 2009;9(Suppl 1):S17-S20.
  7. Mirati estimates based on epidemiology data reported in Globocan 2022 (accessed 2019) and frequencies by mutation; Europe includes EU, Russia and 10 additional European countries; RET estimate does not include thyroid cancer. Rounded to the nearest 1,000.
  8. Zehir A et al, Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23(6):703-713”
  9. Campbell et al, Nature Genetics 2016 “Distinct patterns of somatic genome alterations in lung adenocarcinomas”
  10. Bailey P et al, Nature 2016 “Genomic analyses identify molecular subtypes of pancreatic cancer”
  11. Hallin J. The KRASG12C Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of KRAS-Mutant Cancers in Mouse Models and Patients. Cancer Discovery, 2019.
  12. Mirati Therapeutics. Data on File.
  13. Percent et al. Phase III trial of sitravatinib plus nivolumab vs. docetaxel for treatment of NSCLC after platinum-based chemotherapy and immunotherapy (SAPPHIRE). Journal of Clinical Oncology 2020 38:15_suppl, TPS9635-TPS9635.
  14. Pircher et al., Synergies of Targeting Tumor Angiogenesis and Immune Checkpoints. Int J Mol Sci, 2017. 18(11).
  15. Akalu, Y.T., C.V. Rothlin, and S. Ghosh, TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy. Immunol Rev, 2017. 276(1): p. 165-177.
  16. Kwilas, A.R., R.N. Donahue, K.Y. Tsang, and J.W. Hodge, Immune consequences of tyrosinekinase inhibitors that synergize with cancer immunotherapy. Cancer Cell Microenviron, 2015.
  17. Kryukov GV, Wilson FH, Ruth JR, et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science. 2016;351(6278):1214-1218. doi:10.1126/science.aad5214
  18. Marjon K, Cameron MJ, Quang P, et al. MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis. Cell Rep. 2016;15(3):574-587. doi:10.1016/j.celrep.2016.03.043
  19. Mavrakis KJ, McDonald ER 3rd, Schlabach MR, et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science. 2016;351(6278):1208-1213. doi:10.1126/science.aad5944
  20. Han G, Yang G, Hao D, et al. 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy. Nat Commun. 2021 Sep 23;12(1):5606. doi: 10.1038/s41467-021-25894-9.
  21. Smith C.R., Aranda R, Bobinski T.P., Briere D.M., Burns A.C., et al. Fragment-Based Discovery of MRTX1719, a Synthetic Lethal Inhibitor of the PRMT5•MTA Complex for the Treatment of MTAP-Deleted Cancers. J Med Chem. 2022 Jan 18. doi: 10.1021/acs.jmedchem.1c01900. Online ahead of print.