NASDAQ: MRTX

THERAPEUTICS

Targeting the genetic and immunological drivers of cancer

The KRASG12C Inhibitor, MRTX849, Provides Insight Toward Therapeutic Susceptibility of KRAS Mutant Cancer

Presented at AACR-NCI-EORTC International Conference on Molecular Targets October 28, 2019

Jamie Christensen, Ph.D.

Targeting KRAS Has Been Historically Challenging

Direct, Reversible Inhibitors

- Smooth surface
- High affinity for & high intracellular concentrations of GTP/GDP

Downstream Effector Inhibitors

Raf / MEK and PI3K / AKT / mTOR

- Inhibition of WT signaling resulting in low therapeutic index
- Incomplete inhibition of signaling downstream of KRAS mut

K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions

Jonathan M. Ostrem,^{1,*} Ulf Peters,^{1,*} Martin L. Sos,¹ James A. Wells,² and Kevan M. Shokat¹

548 | NATURE | VOL 503 | 28 NOVEMBER 2013

Covalent Inhibition of KRAS G12C

- Binding in the switch II pocket of GDP KRAS
- Covalent bond to cysteine 12
- Locked in the inactive conformation

KRAS G12C Background—Reminders

- KRAS G12C mutations prevalent in (MSKCC):
 - Lung adenocarcinoma: 14%
 - CRC: 4%
 - PDAC: 2%
 - Other: gastric, uterine/endometroid, CUP. Etc
- KRAS G12C is a transversion mutation—common in smokers
- KRAS G12 mutations impair intrinsic GTPase activity and GTP hydrolysis
- Of KRAS mutations at codon 12, G12C exhibits lower intrinsic GTPase impairment and higher sensitivity to signals that modify extrinsic GTP hydrolysis

Drug Discovery Progression Toward MRTX849

- The addition of the C2 substituent significantly improved solubility and cellular potency and demonstrated more rapid modification of the protein compared with compound 1
- The cyanomethyl substituent on the piperazine <u>further improved potency</u> and allowed for the elimination of the naphthyl 3-hydroxyl group <u>improving ADME properties</u>
- The 8-positon of the naphthyl group to filled a hydrophobic pocket and increased potency an additional 5-fold
- Warhead modification and final optimization for reactivity and bioavailability provided MRTX849

MRTX849 Identified as a Potent, Selective, Orally Bioavailable Inhibitor of KRAS G12C

* Human projected F% from PBPK modeling

5

- MRTX849 only binds to inactive, GDP-bound KRAS^{G12C}
- Systematic adjustment of acrylamide reactivity and optimization of the naphthyl 8-substituent led to MRTX849, which shows greater stability in whole blood and hepatocytes
- Oral PK properties of MRTX849 improved with 50% oral bioavailability and >20 hour half-life projected in humans. Extensive tissue distribution observed with Vd_{ss} of > 10 L/kg projected in humans.

MRTX849 Achieves Near Complete KRAS Modification and Inhibition In Tumors In Vivo

KRAS G12C Protein Modification after a single dose

- Near complete inhibition of KRAS observed in tumor cells between 30 & 100 mg/kg—based on IHC
- No additional activity at higher doses
- Unmodifiable pool of KRAS G12C and stromal cell
- ⁶ signaling impact magnitude of PD effect

Normalized pERK and pS6 Inhibition 6 h post administration/single dose

MRTX849 Dose-dependent Anti-Tumor Efficacy

Maximally Effective Dose Confirmed Between 30-100 mg/kg

H358 Xenograft Model MIA PaCa-2 Xenograft Model Vehicle Vehicle 12001 1 mg/kg 1 mg/kg 1200 3 mg/kg 3 mg/kg 10 mg/kg 10 mg/kg Tumor volume (mm³) 1000-30 mg/kg Volume (mm³) 1000-30 mg/kg 100 mg/kg 100 mg/kg 800 800 **600** 600-Tumor 400 400 200 200 0-0 70 80 20 40 50 60 10 30 Ο 20 25 30 35 40 5 10 15 45 Study Day Day

- The maximally effective dose of MRTX849 was identified as 100 mg/kg QD
- Doses of 200 mg/kg or greater were well-tolerated and did not improve antitumor activity
- Near complete target modification/inhibition correlates with maximal antitumor activity

Derivation of Target Plasma Levels for MRTX849 Clinical Trials

Model	Dose (mg/kg)	AUC ₀₋₂₄ (ug*h/mL)	FF adj AUC ₀₋₂₄ (ug*h/mL)	% Regression (day)	Projected Efficacious Total/FF adj AUC (human, ug*h/mL)	Projected Efficacious Total/FF adj C _{ave} (human, ng/ml)
MIA PaCa-2	10	7	0.07	-52% (13)		
MIA PaCa-2	30	24	0.24	-96% (13)	14.3	600
HCC-44	100	63	0.63	-61% (13)	37.1	1450

- AUC and C_{ave} most closely correlated with antitumor activity based on schedule dependence and infusion studies
- AUC₀₋₂₄ and C_{ave} at 30 & 100 mg/kg, which demonstrated maximum antitumor activity in sensitive & partially sensitive models; respectively, were used for human efficacious exposure projections
- Free-fraction adjusted target AUCs₀₋₂₄ were calculated as **14.3 ug*h/mL** and **37.1 ug*h/mL**
- PBPK Link modeling approaches (PK-Sim[™] or GastroPlus 9.5[™]) were applied to project a human efficacious target dose and exposure dose and fit human data well

MRTX849 Anti-Tumor Efficacy Across Models

Studies Designed to Identify Response/Resistance Correlates

- A panel of in vivo tumor models was utilized for response correlations (obviate in vitro disconnect)
 - 100 mg/kg (max efficacious dose)
 - No significant activity in non-G12C models
- >30% tumor regression observed in ~65% of all models (17/26) suggesting potential for single agent development
- A 75% ORR In NSCLC, while CRC models were moderately responsive (BRAFi in CRC?)
- No significant correlation with co-occurring genetic alterations
- HER family score & cell cycle defects show trend
- Incomplete modification of KRAS in selected models potentially due to differences in extrinsic modulation of GTP hydrolysis

Mechanisms of Response and Resistance to MRTX849 Durable Inhibition of ERK (but not S6) tracks with tumor response

Mechanisms of Intrinsic Resistance to MRTX849

Feedback Signaling and Bypass Pathways---NCI-H358

Dose-dependent Anti-

5.0

Group

ETV4

ETV5

Veh QDx1 24h Veh QDx7 24h

Veh 300mm3 Veh 500mm3 849 QDx1 6h

849 QDx1 24h

849 QDx7 6h

849 QDx7 24h

Vehicle

1 m a/k a

0

1000

Pharmacogenomic Screens to Identify Combination Targets and Resistance Mechanisms

Conclusions

- MRTX849 is a novel small molecule KRAS^{G12C} inhibitor in clinical trials
- Maximal and durable inhibition of KRAS liked to defined PK parameters maximizes response
- Tumors harboring KRAS G12C are broadly dependent on KRAS for growth and survival......
-However, complex signaling circuitry in some KRAS-dependent tumors can result in partial bypass of dependence
- Mechanisms are heterogeneous and relate to feedback or bypass signaling, enhanced nucleotide cycling, and KRAS-independent cell cycle transition
- Rational combination approaches provide a practical solution to address heterogeneity
- Target plasma derivation and corelative science will aid in rational development of MRTX849

14

Acknowledgments

Mirati Tx	Array	Collaborators
Matt Marx	J. Brad Fell	Channing Der (UNC)
	John Fischer	Adrienne Cox (UNC)
Peter Olson	Brian Baer	Piro Lito (MSK)
Ruth Aranda	Nick Saccamano	Pasi Janne (DFCI)
Jeff Winkelman	Mike Burkard	Chip Petricoin (GMU)
Andrew Calinisan	Dylan Hartley	
Lars Engstrom	James Blake	
David Briere	Josh Ballard	
Harrah Chiang	Larry Burgess	
Lauren Hargis	Mark Chicarelli	
Niranjan Sudhakar	John J. Gaudino	
Vickie Bowcut	Lauren Hanson	
	Tony Tang	
	Pavel Savechenkov	
Monceros Biosystems	Guy Vigers	
Adam Pavlicek	Karyn Bouhana	
Julio Fernandez-Banet	Ron Hinklin	
Sole Gatto	Eric Hicken	

