

#ASC022

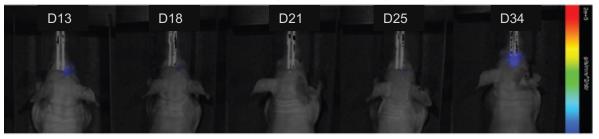
Activity of Adagrasib (MRTX849) in Patients with KRAS^{G12C}-Mutated NSCLC and Active, Untreated CNS Metastases in the KRYSTAL-1 Trial

Joshua K. Sabari,¹ Alexander I. Spira,² Rebecca S. Heist,³ Pasi A. Jänne,⁴ Jose M. Pacheco,⁵ Jared Weiss,⁶ Shirish M. Gadgeel,⁷ Hirak Der-Torossian,⁸ Karen Velastegui,⁸ Thian Kheoh,⁸ James G. Christensen,⁸ Marcelo V. Negrao⁹

¹Perlmutter Cancer Center, New York University Langone Health, New York, NY; ²Virginia Cancer Specialists, Fairfax, VA; US Oncology Research, The Woodlands, TX; NEXT Oncology, VA; ³Massachusetts General Hospital, Boston, MA; ⁴Dana-Farber Cancer Institute, Boston, MA; ⁵Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; ⁶Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, NC; ⁷Henry Ford Cancer Institute, Detroit, MI; ⁸Mirati Therapeutics, Inc., San Diego, CA; ⁹Department of Thoracic/Head & Neck Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX

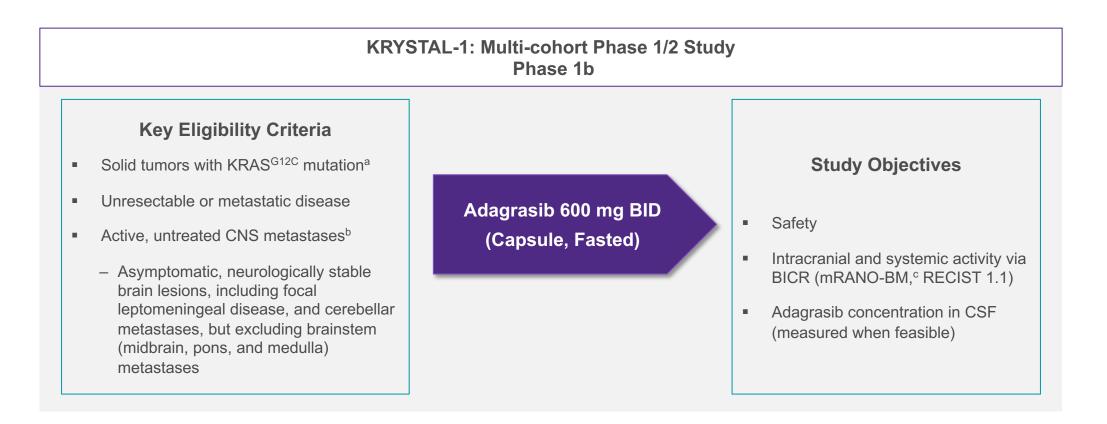
presented by: Dr Joshua K. Sabari

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.


Adagrasib (MRTX849) is a Differentiated KRAS^{G12C} Inhibitor

LU99Luc KRAS^{G12C} CNS Metastases Model

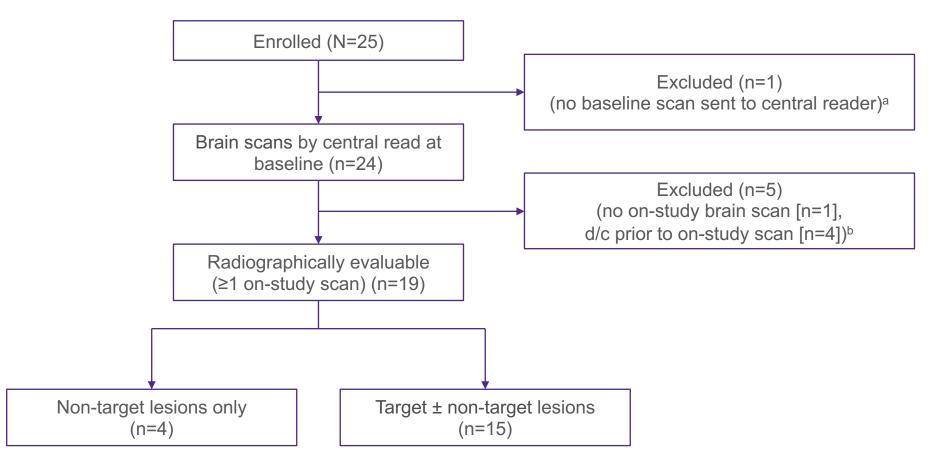
- Approximately 27–42% of patients with KRAS^{G12C}-mutated NSCLC have CNS metastases at diagnosis^{1–4}
- Patients with active, untreated CNS metastases have a poor prognosis, median OS ~5 months⁵
- CNS-penetrant targeted therapies improve outcomes for patients with NSCLC complicated by CNS metastases^{a,6–8}
- Adagrasib has demonstrated CNS exposure, tumor regressions in animal models, and clinical activity in treated, stable CNS metastases (IC ORR 33%, IC DCR 85%)^{9,10}



Adagrasib (100 mg/kg BID)

Adagrasib has penetration in the CNS with K_{p,uu} of 0.4 (1 hour)

KRYSTAL-1 (849-001) Phase 1b: Active, Untreated CNS Metastases Cohort


Here we report the first data for a KRAS^{G12C} inhibitor in patients with NSCLC harboring a KRAS^{G12C} mutation and active, untreated CNS metastases at baseline (N=25)

aKRAS^{G12C} mutation detected in tumor tissue and/or ctDNA per protocol; ^bPreviously irradiated lesions were only considered as target lesions if there was unequivocal progression post-radiation; ^cModifications: ≥5 mm lesions, corticosteroid use monitored per concomitant medications, ECOG PS (rather than Karnofsky Performance Scale) ClinicalTrials.gov. NCT03785249

Demographics and Baseline Characteristics

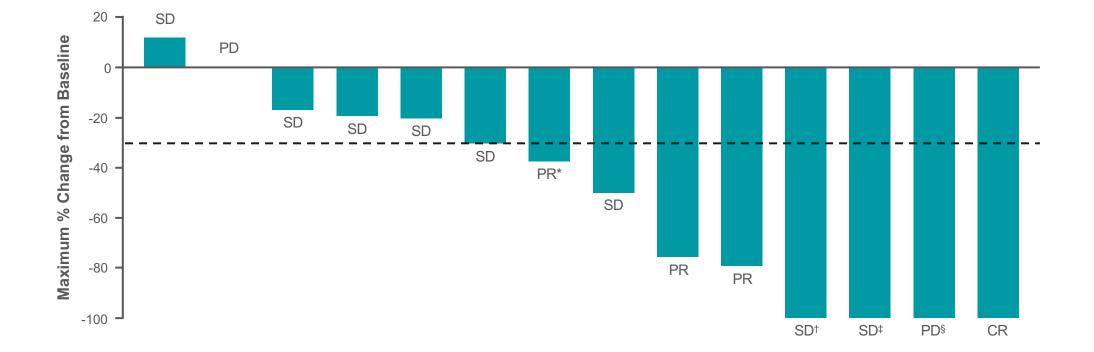
	Adagrasib Monotherapy (N=25)	
Median age (range), years	66 (47–89)	
Female sex, n (%)	13 (52%)	
Race, n (%) White Black or African American Asian / Other	21 (84%) 1 (4%) 1 (4%) / 2 (8%)	
ECOG PS, n (%) 0 / 1	7 (28%) / 18 (72%)	
Smoking history, n (%) Never smoker / Current or former smoker	1 (4%) / 24 (96%)	
Number of baseline CNS lesions, ^a n (%) Target: 0 / 1 / 2–5 / >5 Non-target: 0 / 1 / 2–5 / >5	5 (20%) / 12 (48%) / 7 (28%) / 0 6 (24%) / 7 (28%) / 10 (40%) / 1 (4%)	
Prior lines of systemic therapy, ^a n (%) 0 1 2 3+	3 (12%) 12 (48%) 5 (20%) 4 (16%)	

Patient Disposition

Target lesions: all measurable lesions (size \geq 5 mm) with \leq 5 lesions in total, and representative of all involved organs; non-target lesions: all evaluable lesions and measurable lesions not identified as target lesions ^aPatient new to study so no scan completed before cut-off; ^bDue to reasons of: AEs (n=2), patient withdrawal (n=1), death (n=1)

Data as of December 31, 2021 (median follow-up: 6.6 months)

Adagrasib in Patients with Active, Untreated CNS Metastases: Intracranial Response by BICR


Efficacy Outcome	Patients with Non-target Lesions Only (n=4)	Patients with Target Lesions (n=15)ª	Overall (n=19) ^b
Objective response rate, n (%)	2 (50%)	4 (27%)	6 (32%)
Best overall response, n (%)			
Complete response (CR)	2 (50%)	1 (7%)	3 (16%)
Partial response (PR)	0	3 (20%)°	3 (16%)°
Stable disease (SD)	2 (50%)	8 (53%)	10 (53%)
Progressive disease (PD)	0	2 (13%)	2 (11%)
Not evaluable	0	1 (7%) ^d	1 (5%) ^d
Disease control rate, n (%)	4 (100%)	12 (80%)	16 (84%)

All results are based on BICR (mRANO-BM)

alncludes patients with target ± non-target lesions; blncludes patients in clinically evaluable population with ≥1 post-baseline assessment;

°Unconfirmed (n=1), confirmed CR after data cut-off; «Not evaluable (n=1) due to scans being too early (100% regression in target lesions)

Adagrasib in Patients with Active, Untreated CNS Metastases: Intracranial Best Tumor Change From Baseline

- Objective IC responses were observed in 32% (95% CI, 12.6–56.6)^a
- IC DCR was 84% (95% CI, 60.4–96.6)

All results are based on BICR (mRANO-BM criteria). Only patients with target lesions and ≥1 post-baseline scans are shown; 1 patient not evaluable for best overall response due to scans being too early (100% regression in target lesions) *Unconfirmed at data cut-off, confirmed CR after data cut-off; †SD due to non-target lesion progression; ‡Unconfirmed CR due to no subsequent scan; §PD due to new lesions alncludes patients with target and non-target lesions

Data as of December 31, 2021 (median follow-up: 6.6 months)

Adagrasib in Patients with Active, Untreated CNS Metastases: Concordance of Intracranial and Systemic Disease Control

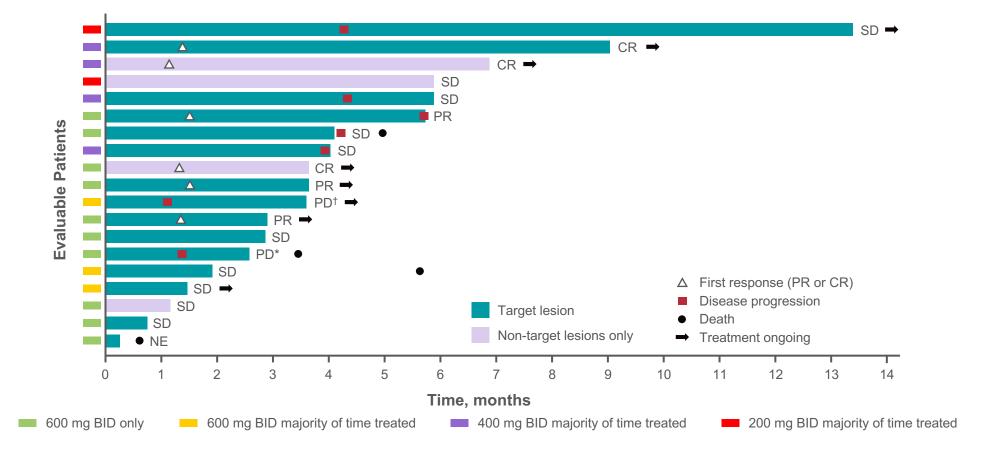
Efficacy Outcome	Intracranial BOR	Systemic BOR
Patient 1	PR	PR ^a
Patient 2	SD	PR ^a
Patient 3	SD	SD
Patient 4	SD	SD
Patient 5	SD	PR
Patient 6	PD	SD
Patient 7	SD	PR
Patient 8	PR	SD
Patient 9	PD	PD
Patient 10	CR	SD

SD	SD
SD	PR
CR	SD
SD	SD
PR⁵	PR°
SD	PD
CR	PR
NE	NE
SD	NE
	CR SD PR ^b SD CR NE

Concordant disease control

Discordant disease control

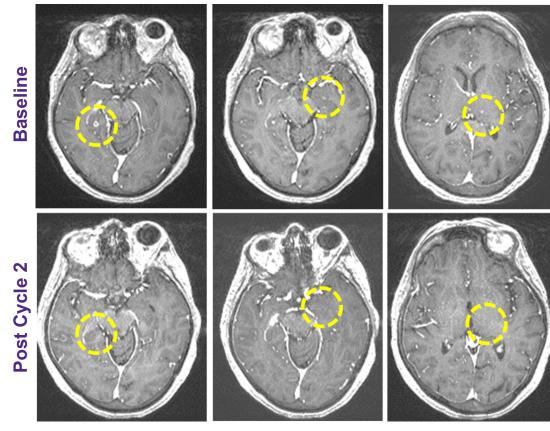
- Concordance between systemic and intracranial disease control was 88% (14/16)
- Systemic ORR by RECIST v1.1 was 37% (95% CI, 16.3–61.6); systemic DCR 79% (95% CI, 54.4–93.9)

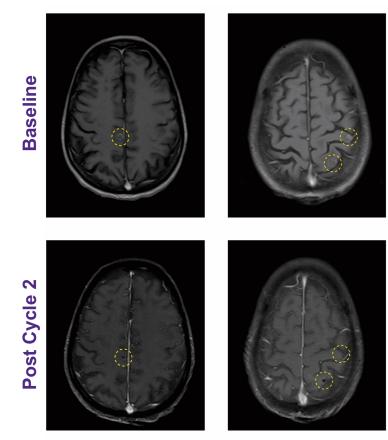

All results are based on BICR (mRANO-BM, RECIST 1.1)

Systemic responses in clinically evaluable population with ≥ 1 post-baseline assessment (n=19)

^aConfirmed after data cut-off; ^bUnconfirmed at data cut-off, confirmed CR after data cut-off; ^cUnconfirmed at data cut-off, BOR of SD after data cut-off

Data as of December 31, 2021 (median follow-up: 6.6 months)

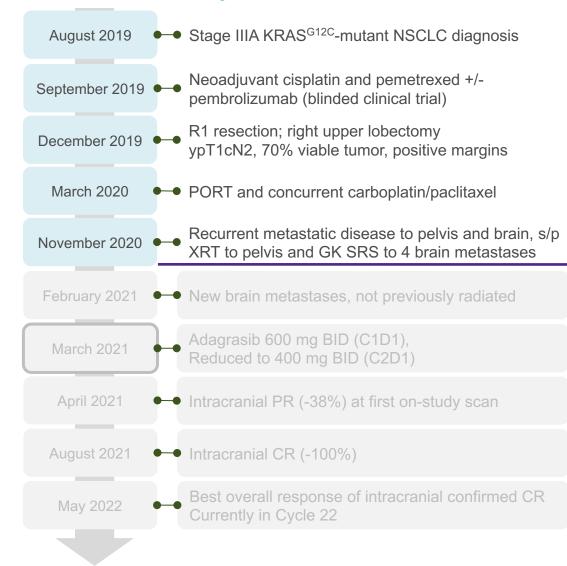

Adagrasib in Patients With Active, Untreated CNS Metastases: Duration of Treatment


- Median IC DOR was not reached (95% CI, 4.1–NE)^a
- Median IC PFS was 4.2 months (95% CI, 3.8–NE)^b; median OS had not been reached

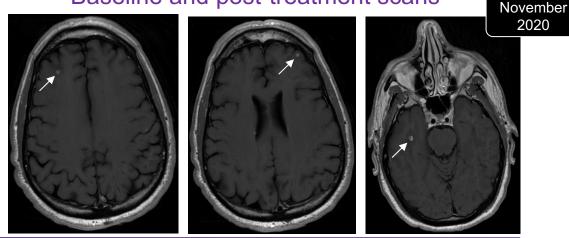
All results are based on BICR (mRANO-BM criteria)

*IC BOR of PD, systemic BOR of PD; †IC BOR of PD, systemic BOR of SD; *Systemic mDOR of confirmed responses was 9.6 months (95% CI, 2.7–9.6); *Median systemic PFS was 5.6 months (95% CI, 3.8–11.0)

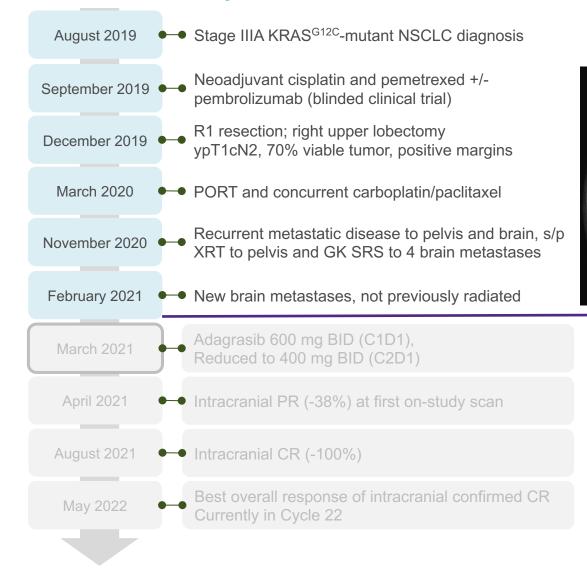
- Cerebrospinal fluid
 - 34.6 nM (20.9 ng/mL)
 - K_{p,uu} = 0.42

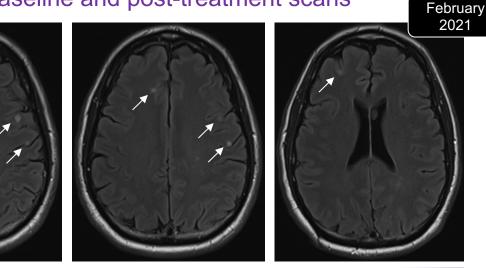


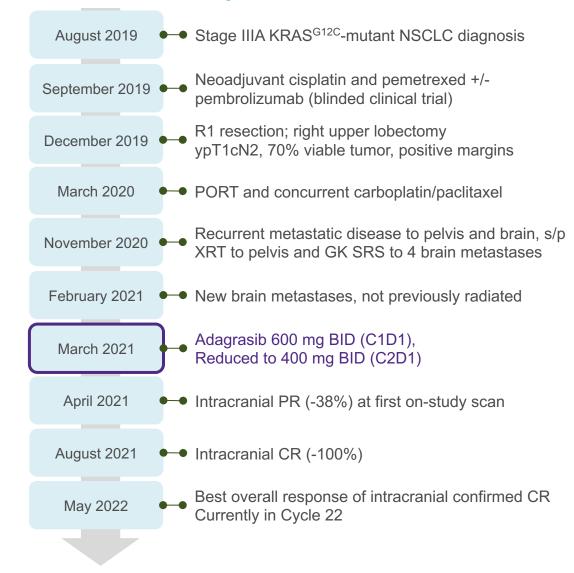
- Cerebrospinal fluid
 - 24.2 nM (14.6 ng/mL)
 - K_{p,uu} = 0.51
- Two patients had CSF collected, with an average K_{p,uu} of 0.47; this exceeds values for TKIs for which both CNS penetration and antitumor activity in CNS metastases has been demonstrated⁹

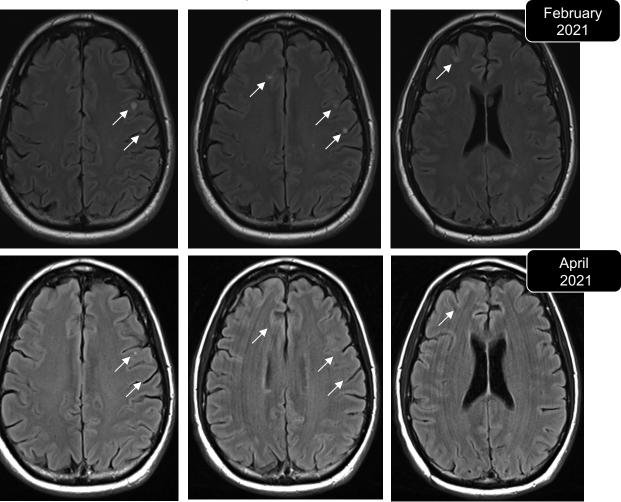

62-year-old male, former smoker with metastatic KRAS^{G12C}-mutant NSCLC

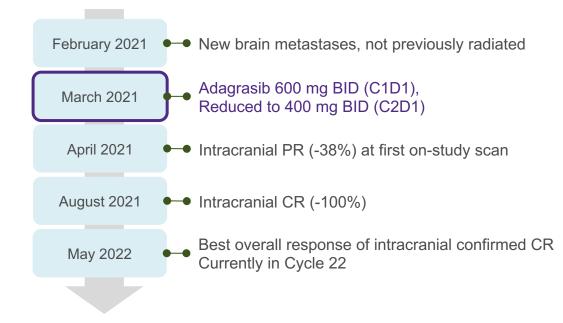
August		Stage IIIA KRAS ^{G12C} -mutant NSCLC diagnosis
Septemb	er 2019 🕂	Neoadjuvant cisplatin and pemetrexed +/- pembrolizumab (blinded clinical trial)
Decemb	er 2019 🗕	R1 resection; right upper lobectomy ypT1cN2, 70% viable tumor, positive margins
March	2020	PORT and concurrent carboplatin/paclitaxel
Novemb	er 2020 🗕	Recurrent metastatic disease to pelvis and brain, s/p XRT to pelvis and GK SRS to 4 brain metastases
Februar	y 2021 🕂	New brain metastases, not previously radiated
March	2021	Adagrasib 600 mg BID (C1D1), Reduced to 400 mg BID (C2D1)
April	2021 🕂	Intracranial PR (-38%) at first on-study scan
August		Intracranial CR (-100%)
May 2		Best overall response of intracranial confirmed CR Currently in Cycle 22


62-year-old male, former smoker with metastatic KRAS^{G12C}-mutant NSCLC

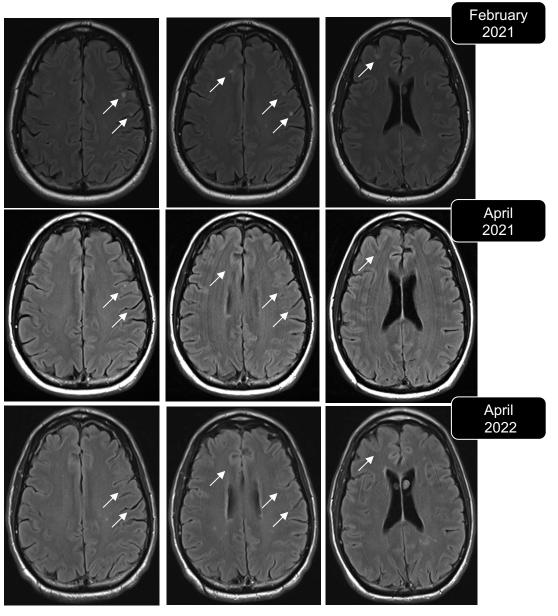

Baseline and post-treatment scans


62-year-old male, former smoker with metastatic KRAS^{G12C}-mutant NSCLC


Baseline and post-treatment scans



62-year-old male, former smoker with metastatic KRAS^{G12C}-mutant NSCLC


Baseline and post-treatment scans

• Select TRAEs of relevance:

- Grade 2 increased ALT/AST
- Grade 1 GI-related events (diarrhea, nausea, vomiting)
- Intermittent grade 1 increased blood creatinine
- Grade 3 lymphopenia

Treatment-Related Adverse Events

	Adagrasib Monotherapy (N=25) Capsule, Fasted	
TRAEs, n (%)	Any Grade	Grade 3
Any TRAEs	24 (96%)	9 (36%)
Most frequent TRAEs,ª n (%)		
Nausea	20 (80%)	2 (8%)
Diarrhea	20 (80%)	0
Vomiting	11 (44%)	3 (12%)
AST increase	10 (40%)	1 (4%)
ALT increase	9 (36%)	2 (8%)
Fatigue	8 (32%)	0
Anemia	6 (24%)	0
Blood alkaline phosphatase increase	6 (24%)	1 (4%)
Blood creatinine increase	6 (24%)	0
Decreased appetite	6 (24%)	0
Dizziness	5 (20%)	2 (8%)
Dysgeusia	5 (20%)	0

- Grade 1–2 TRAEs occurred in 60% of patients
- No grade 4/5 TRAEs
- TRAEs led to dose reduction/interruption in 12 (48%) patients and discontinuation in 1 (4%) patient
- CNS-specific TRAEs included dizziness (20%, n=5) and grade 1/2 aphasia and insomnia (4%, n=1)

^aOccurring in ≥20% of patients (any grade)

Conclusions and Future Directions

- CNS metastases from KRAS-mutant NSCLC are common and associated with poor prognosis (median OS ~5 months with untreated CNS metastases)⁵
- Adagrasib demonstrated encouraging and durable CNS-specific activity in patients with KRAS^{G12C}-mutant NSCLC and active, untreated CNS metastases
 - Intracranial ORR 32%; median intracranial DOR not reached
 - Median OS not reached (median follow-up 6.6 months)
 - Mean K_{p,uu} of 0.47, which is comparable to, or exceeds, values for known CNS-penetrant TKIs⁹
 - Manageable safety profile with few CNS-specific TRAEs^{10–13}
- Adagrasib is the first KRAS^{G12C} inhibitor to demonstrate clinical activity in patients with KRAS^{G12C}-mutated NSCLC with treated and untreated CNS metastases
- Expanded Access Program is open and enrolling patients with KRAS^{G12C}-mutant solid tumors including patients with active, untreated CNS metastases

For further data describing the efficacy of adagrasib in patients with KRAS^{G12C}-mutated NSCLC, please see Spira et al, ASCO 2022 abstract 9002

Acknowledgments

- The patients and their families for making this trial possible
- The clinical study teams and investigators for their work and contributions
- This study is supported by Mirati Therapeutics, Inc.
- All authors contributed to and approved this presentation; writing and editorial assistance were provided by Rebecca Benatan, BSc, of Ashfield MedComms, an Ashfield Health company, and was funded by Mirati Therapeutics, Inc.
- Copies of this slide deck obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO[®] or the author of this slide deck

Investigators

Daniel M. Anderson Metro Minnesota Community Oncology Research Consortium

Minal Barve Mary Crowley Cancer Research

Shirish M. Gadgeel Henry Ford Cancer Institute/ Henry Ford Health System

Rebecca S. Heist Massachusetts General Hospital Pasi A. Jänne Dana-Farber Cancer Institute

Hirva Mamdani Karmanos Cancer Institute

Marcelo V. Negrao MD Anderson Cancer Center

Jose M. Pacheco University of Colorado Joshua Sabari Perlmutter Cancer Center

Alexander I. Spira Virginia Cancer Specialists

Jared Weiss University of North Carolina

Ralph Zinner University of Kentucky

References

- 1. Sebastian M, et al. Lung Cancer. 2021;154:51–61.
- 2. Cui W, et al. Lung Cancer. 2020;146:310–317.
- 3. Wu MY, et al. *Cancers*. 2021;13(14):3572.
- 4. Spira Al, et al. Lung Cancer. 2021;159:1–9.
- 5. Tomasini P, et al. Int J Mol Sci. 2016;17(12):2132.
- 6. Ballard P, et al. *Clin Cancer Res.* 2016;22:5130–40.
- 7. Kodama T, et al. Cancer Chemother Pharmacol. 2014;74:1023-8.
- 8. Shaw AT, et al. Lancet Oncol. 2017;18:1590–9.
- 9. Sabari JK, et al. Clin Cancer Res. 2022 [ePub]: DOI: 10.1158/1078-0432.CCR-22-0383.
- 10. Jänne PA, et al. New Engl J Med. 2022 [In submission].
- 11. Ou S-HI, et al. J Clin Oncol. 2022 [ePub]: DOI: 10.1200/JCO.21.02752.
- 12. Bekaii-Saab TS, et al. Presented at: 2022 ASCO GI; Jan 21, 2022.
- 13. Weiss J, et al. Presented at: 2021 ESMO; Sept 19, 2021.

Abbreviations

ALK, anaplastic lymphoma kinase ALT, alanine aminotransferase AST, aspartate aminotransferase BICR, blinded independent central review BID, twice daily BOR, best overall response C1, cycle 1 CI, confidence interval CNS, central nervous system CR, complete response CSF, cerebrospinal fluid ctDNA, circulating tumor deoxyribonucleic acid D1, day 1 d/c, discontinuation DCR, disease control rate DOR, duration of response ECOG PS, Eastern Cooperative Oncology Group Performance Status EGFR, epidermal growth factor receptor

IC. intracranial K_{p.uu}, unbound brain to unbound plasma concentration ratio KRAS, Kirsten rat sarcoma virus mRANO-BM, modified RANO-BM NE, not evaluable NR. not reached NSCLC, non-small cell lung cancer ORR, objective response rate OS, overall survival PD, progressive disease PFS, progression-free survival PORT, post-operative radiation therapy PR, partial response RANO-BM, Response Assessment in Neuro-Oncology-Brain Metastases **RECIST, Response Evaluation Criteria In Solid Tumors** SD, stable disease TKI, tyrosine kinase inhibitor TRAE, treatment-related adverse event