

Drug-Anchored *in vitro* and *in vivo* CRISPR Screens to Identify Targetable Vulnerabilities and Modifiers of Response to MRTX849 in KRAS^{G12C}-Mutant Models

Lars Engstrom – Principal Scientist Mirati Therapeutics – San Diego, CA

Disclosures

• Lars Engstrom is an employee and stock holder of Mirati Therapeutics

MRTX849 is a Clinically Active, Irreversible, KRAS^{G12C} Inhibitor

⁵ CDX and PDX models were treated with MRTX849 @ 100mg/kg PO, QD in all models shown. % change from baseline control was calculated on ~ day 22 post initiation of dosing.

6 CDX and PDX models were treated with MRTX849 @ 100mg/kg PO, QD in all models shown. % change from baseline control was calculated on ~ day 22 post initiation of dosing.

Drug Anchored CRISPR Screen Reveals Drug MOA, Resistance Biomarkers & Combo Targets

Combination Targets and Putative Resistance Biomarkers

Functional Contribution of Top MRTX849 Regulated Pro-survival and Apoptosis Genes Elucidated by CRISPR Screen

log2 FC

RISPR					6	5	5		60	L11		3	1
	Model		MRTX849	MYC	KRA:	BIRC	BCL2	MCL1	CASF	BCL2	BAX	CASF	APAF
Γ		In Vitro	(-)										
			+										
	L099	In Vivo	(-)										
			+										
Ī	H358	In Vitro	(-)										
			+										
Γ	KYSE410	In Vitro	(-)										
			+										

NAseq			5 L 1	-			P7	66	8	2L11	ŭ
Model	MRTX849	BIRC	BCL	MCL	BAD	BMF	CASI	CASI	BBC	BCL	APAI
MiaPaca2	QDx7 6hr										
H1373	QDx7 6hr										
H358	QDx7 6hr										
H2122	QDx7 6hr										
H2030	QDx7 6hr										

- MRTX849 treatment regulates expression of selected pro-survival and proapoptotic genes which correlates with tumor growth inhibition in multiple KRAS^{G12C} mutant models.
- Functional role for many genes confirmed in CRISPR data
 - Pro-survival genes BIRC5/Survivin, BCL2L1, MCL1: Decreased by MRTX849 & Exhibit Dropout
 - Pro-apoptotic genes BCL2L11: Increased by MRTX849 & Exhibit Enrichment
 - Apoptotic regulators APAF1, CASP3/9 enriched in drug-treated CRISPR data, in particular
- Several tumor suppressors enriched suggesting potential for intrinsic resistance

Increased KRAS^{G12C} Modification Via Upstream Combinations Improves Response

Alternative Pathway Activation Through mTOR May Contribute to Adaptive Resistance

0

- mTOR pathway genes drop out +/- MRTX849 treatment
- Loss of TSGs PTEN and TSC1/2 provide growth advantage
- mTOR combinations further reduce pS6 activation and leads to increased in vivo efficacy

Cell Cycle Strongly Implicated in CRISPR Screens and CDK4/6 Inhibitors Augment MRTX849 In Vivo Efficacy

Single Agent Activity of MRTX849 in Selected Nonclinical KRAS^{G12C} Tumor Models that Exhibit Intrinsic or Adaptive Resistance

🔜 Lung 🛛 📉 Lung PDX 🗖 Esophagus

CDX and PDX models were treated with MRTX849 @ 100mg/kg PO, QD in all models shown. % change from baseline control was calculated on ~ day 22 post initiation of dosing.

MRTX849 in Combination with HERi or SHP2i Further Inhibit KRAS^{G12C} Resulting in **Dramatic Regression in Models Partially Resistant to Single Agent MRTX849**

SHP2i Combination – RMC-4550

MRTX849 in Combination with Vistusertib or Palbociclib, Block Downstream Pathway Activation and Induce Dramatic Regression in Models Partially Resistant to Single Agent MRTX849

CDK4/6i Combination – Palbociclib

KEAP1 KO Modifies Response to KRAS^{G12C} Inhibition and May Contribute to Adaptive Resistance

Conclusions

- MRTX849 is broadly active as a single agent across a panel of KRAS^{G12C}-mutant xenograft models.
- Executed MRTX849-anchored CRISPR screens targeting ~1,000 genes in 3 KRAS^{G12C} cell lines, in vitro & in vivo.
- Tumor suppressor genes that promoted tumor growth also conferred partial drug resistance including KEAP1, NF1, Rb1, TSC1/2, and PTEN.
- Screened ~70 rational compounds in combination with MRTX849 across 8 lung cell lines *in vitro* that were partially MRTX849-resistant *in vivo*.
- Top combination targets validated with *in vivo* combinations are EGFR family, SHP2, SOS1, mTOR, and CDK4/6.

Acknowledgments

Mirati Therapeutics

Jamie Christensen Pete Olson **Laura Waters** Ruth Aranda **Jill Hallin** David Briere **Andrew Calinisan** Niranjan Sudhakar Lauren Hargis Vickie Bowcut

Monoceros Biosystems

Adam Pavlicek Sole Gatto Julio Fernandez-Banet

Collaborators

Channing Der (UNC) Adrienne Cox (UNC) Piro Lito (MSK) Pasi Janne (DFCI) XenoSTART

Service Providers Cellecta Crown Biosciences