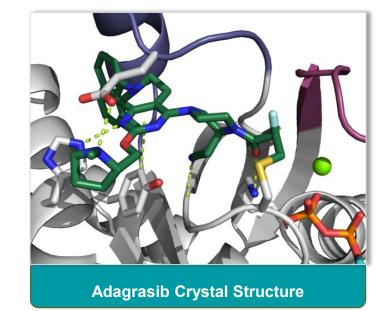


KRYSTAL-1: Updated Safety and Efficacy Data With Adagrasib (MRTX849) in NSCLC With KRAS^{G12C} Mutation From a Phase 1/2 Study

Pasi A. Jänne¹; Igor I. Rybkin²; Alexander Spira³; Gregory J. Riely⁴; Kyriakos P. Papadopoulos⁵; Joshua Sabari⁶; Melissa L. Johnson⁷; Rebecca S. Heist⁸; Lyudmila Bazhenova⁹, Minal Barve¹⁰, Jose M. Pacheco¹¹; Ticiana A. Leal¹²; Karen Velastegui¹³; Cornelius Cilliers¹³; Peter Olson¹³; James G. Christensen¹³; Thian Kheoh¹³; Richard C. Chao¹³; Sai-Hong Ignatius Ou¹⁴

¹Dana-Farber Cancer Institute, Boston, Massachusetts, USA. ²Henry Ford Cancer Institute, Detroit, Michigan. ³Virginia Cancer Specialists, Fairfax, Virginia, USA; US Oncology Research, The Woodlands, Texas, USA. ⁴Thoracic Oncology Service, Division of Solid Tumor, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York, USA. ⁵START Center for Cancer Care, San Antonio, Texas, USA. ⁶Department of Medical Oncology, New York University Langone Health, New York, NY; New York University Perlmutter Cancer Center, New York, New York, USA. ⁷Sarah Cannon Research Institute Tennessee Oncology, Nashville, Tennessee, USA. ⁸Massachusetts General Hospital, Boston, Massachusetts. ⁹Moores Cancer Center, University of California San Diego, La Jolla, California, USA. ¹⁰Mary Crowley Cancer Center, Dallas, Texas, USA. ¹¹Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA. ¹²University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA. ¹³Mirati Therapeutics, Inc., San Diego, California. ¹⁴University of California, Irvine, Chao Family Comprehensive Cancer Center, Orange, California, USA.



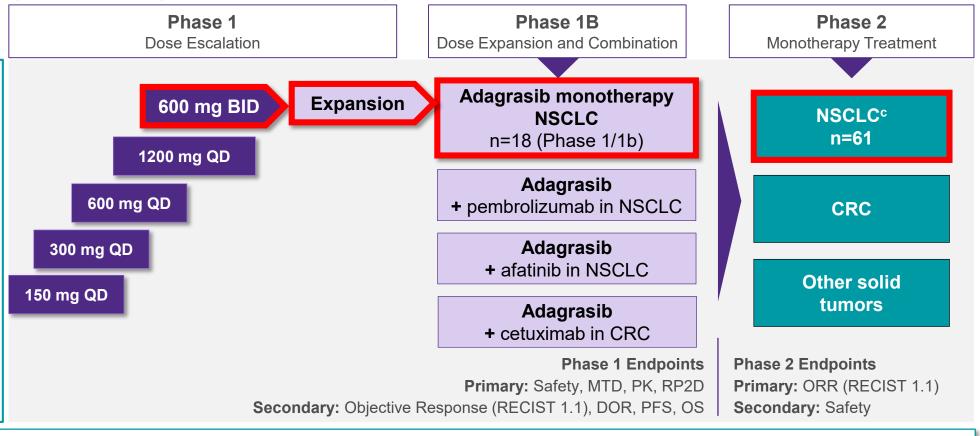
Disclosures

- Sponsored Research:
 - Mirati Therapeutics, Inc; Boehringer-Ingelheim; Eli Lilly and Company; Takeda Oncology; Puma Biotechnology; Astellas Pharmaceuticals; AstraZeneca; Daiichi Sankyo; Revolution Medicines
- Consulting Fees:
 - Mirati Therapeutics, Inc; Boehringer-Ingelheim; Pfizer; Roche/Genentech; Chugai Pharmaceuticals;
 Eli Lilly and Company; Araxes Pharma; Ignyta, Takeda Oncology; Voronoi; Novartis; SFJ
 Pharmaceuticals; Biocartis; LOXO Oncology; Sanofi; Transcenta AstraZeneca; Daiichi Sankyo
- Stockholder in:
 - Gatekeeper Pharmaceuticals; LOXO Oncology
- Other:
 - Post-marketing royalties from DFCI-owned IP on EGFR mutations (licensed to LabCorp)

Adagrasib (MRTX849) Is a Differentiated and Selective Inhibitor of KRAS^{G12C}

- KRAS^{G12C} mutations act as oncogenic drivers and occur in approximately 14% of NSCLC (adenocarcinoma), 3-4% of CRC, and 1-2% of several other cancers¹⁻³
- The KRAS protein cycles between GTP-On and GDP-Off states and has a protein resynthesis half-life of ~24 h^{4,5}
- Adagrasib is a covalent inhibitor of KRAS^{G12C} that irreversibly and selectively binds KRAS^{G12C} in its inactive, GDP-bound state⁶
- Adagrasib was optimized for desired properties of a KRAS^{G12C} inhibitor:
 - Potent covalent inhibitor of KRAS^{G12C} (cellular IC₅₀: ~5 nM)
 - High selectivity (>1000X) for the mutant KRAS^{G12C} protein vs wild-type KRAS
 - Favorable PK properties, including oral bioavailability, long half-life (~24 h), and extensive tissue distribution

Hypothesis: Maintaining continuous exposure of adagrasib above a target threshold enables inhibition of KRASdependent signaling for the complete dose interval and maximizes depth and duration of antitumor activity


^{1.} Zehir A, Benayed R, Shah RH, et al. Nat Med. 2017;23(6):703-713. 2. Schirripa M, Nappo F, Cremolini C, et al. Clin Colorectal Cancer. 2020; S1533-0028(20)30067-0.

^{3.} NIH TCGA: The Cancer Genome Atlas. 4. Bos JL, Rehmann H, Wittinghofer A. Cell. 2007;129: 865-877. 5. Shukla S, Allam US, Ahsan A, et al. Neoplasia. 2014;16(2):115-128;

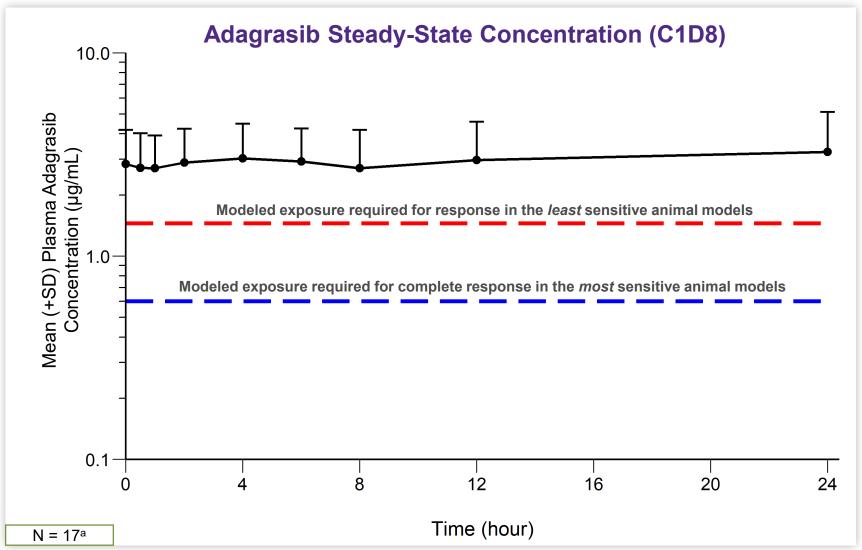
KRYSTAL-1 (849-001) Study Design

Key Eligibility Criteria Up to n=391

- Solid tumor with KRAS^{G12C} mutation
- Unresectable or metastatic disease
- Progression on or following treatment with a PD-1/L1 inhibitor following or in combination with chemotherapy (NSCLC)^a
- Treated and/or stable brain metastases^b

- Previously reported data from Phase 1 demonstrated clinical activity with adagrasib (MRTX849) in patients with pretreated KRAS^{G12C} NSCLC and CRC
- 600 mg BID was chosen as the RP2D
- Here we report data for 79 patients evaluating adagrasib 600 mg BID in patients with previously treated NSCLC in Phase 1/1b (n=18, median follow-up, 9.6 mo) and Phase 2 (n=61); pooled (n=79) median follow-up, 3.6 mo
- Data cut-off date: 30 August 2020

^aApplies to the majority of NSCLC cohorts. ^bMost cohorts allow patients with brain metastases if adequately treated and stable; additional phase 1/1b cohort allows limited brain metastases. ^cPrimary NSCLC cohort eligibility based on a tissue test; KRAS^{G12C} testing for entry was performed locally or centrally using a sponsor pre-approved test. ClinicalTrials.gov. NCT03785249.


Patient Demographics and Baseline Characteristics: NSCLC

	Phase 1/1b 600 mg BID (n=18)	Phase 1/1b and 2 600 mg BID (n=79)
Median age, y (range)	65 (40-76)	65 (25-85)
Female, n (%)	11 (61%)	45 (57%)
Race, n (%)		
White	15 (83%)	67 (85%)
Black	3 (17%)	5 (6%)
Asian	0 (0%)	5 (6%)
Other	0 (0%)	2 (3%)
ECOG PS, n (%)		
0	8 (44%)	17 (22%)
1	10 (56%)	62 (78%)
Current/former smokers	16 (89%)	75 (95%)
Nonsquamous histology, n (%)	18 (100%)	76 (96%)
Prior lines of anticancer therapy ^a , median (range)	3 (1-9)	2 (1-9)
Prior anti-PD-1/L1 inhibitor, n (%)	16 (89%)	73 (92%)

^aPhase 2 patients with NSCLC received prior treatment with platinum regimens.

Data as of 30 August 2020. Pooled includes NSCLC Phase 1/1b and Phase 2 600 mg BID.

Adagrasib at 600 mg BID Exhibits Favorable PK Properties; Exposure Maintained Above Target Plasma Thresholds Throughout Full Dosing Interval

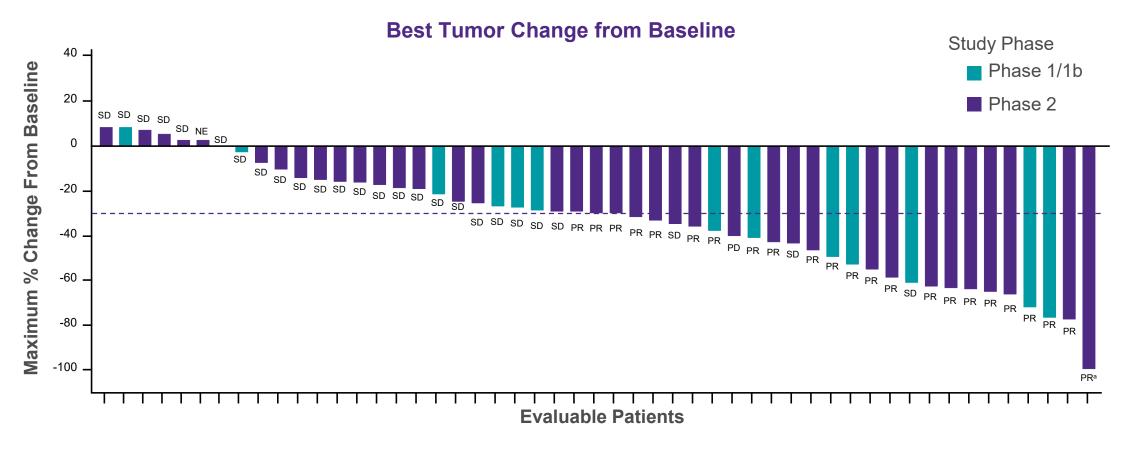
PK Properties Summary:

- C_{ave} of 2.63 µg/mL is 2-5-fold above target threshold for full dose interval
- C_{ave} PK parameter best matched to nonclinical antitumor activity
- Low peak to trough ratio at steady state (~1.27)
- $t_{1/2} \sim 24 \text{ hours}$
- Extensive volume of distribution predicted based on nonclinical studies

Incidence of Treatment-Related Adverse Events

	All Cohorts Pooled, 600 mg BID ^a (n=110)		
TRAEs ^{b,c} , %	Any grade	Grades 3-4	Grade 5
Any TRAEs	85%	30%	2%
Most frequent TRAEsa,d, %			
Nausea	54%	2%	0%
Diarrhea	51%	0%	0%
Vomiting	35%	2%	0%
Fatigue	32%	6%	0%
Increased ALT	20%	5%	0%
Increased AST	17%	5%	0%
Increased blood creatinine	15%	0%	0%
Decreased appetite	15%	0%	0%
QT prolongation	14%	3%	0%
Anemia	13%	2%	0%

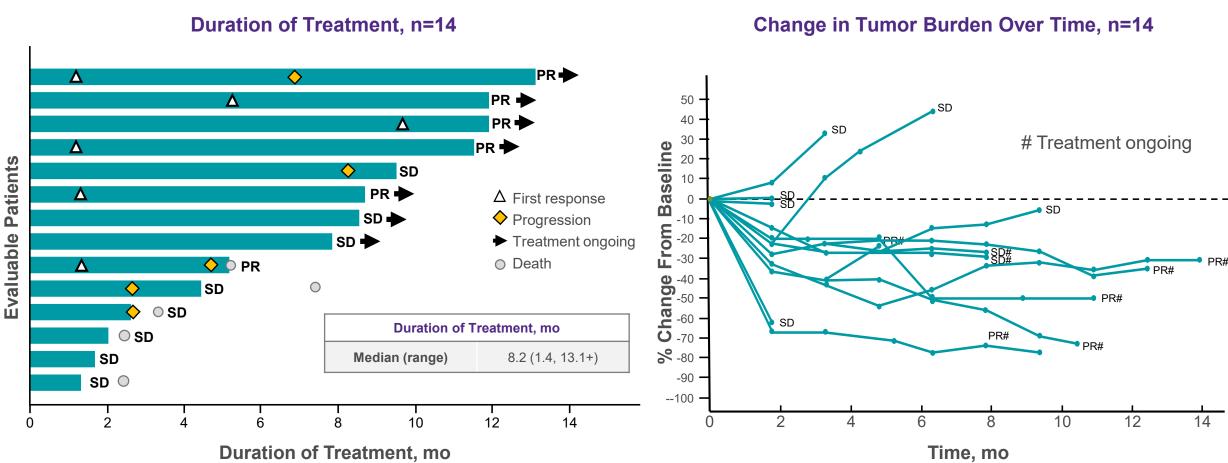
- Grade 5 TRAEs included pneumonitis in a patient with recurrent pneumonitis (n=1) and cardiac failure (n=1)
- 7.3% of TRAEs led to discontinuation.


^aIncludes patients pooled from Phase 1/1b and Phase 2 NSCLC (n=79), and CRC and Phase 2 other tumor cohorts (n=31). ^bIncludes events reported between first dose and 30 August 2020. ^cThe most common treatment-related SAEs reported (2 patients each) reported were diarrhea (grade 1, grade 2) and hyponatremia (both grade 3). ^dOccurred in ≥10%.

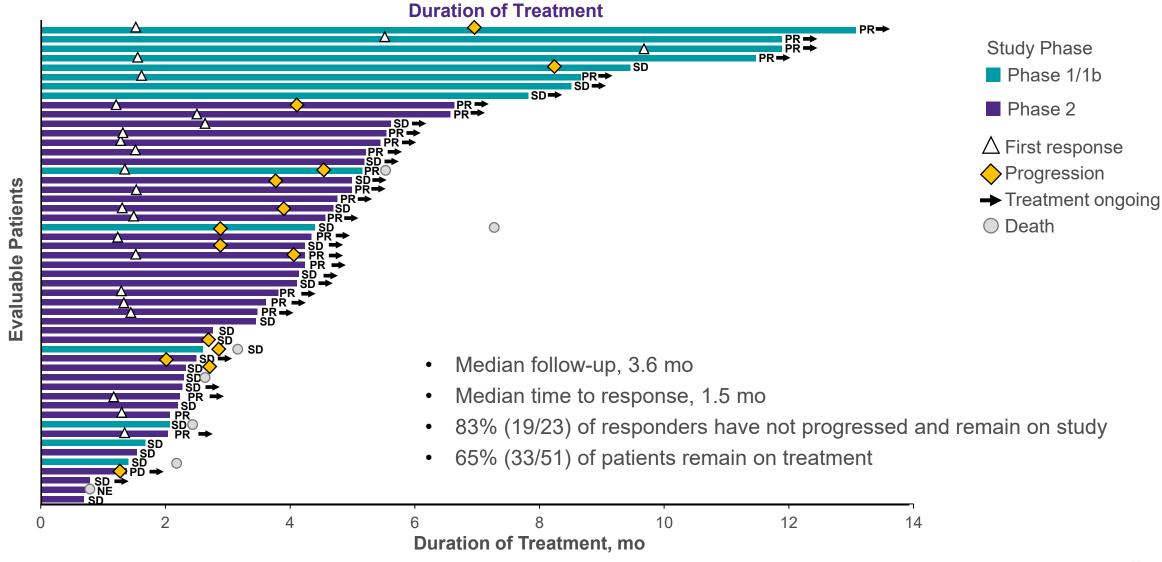
Adagrasib in Patients With NSCLC: ORR in Pooled Dataset

Efficacy Outcome ^a , n (%)	Phase 1/1b, NSCLC 600 mg BID (n=14)	Phase 1/1b and 2, NSCLC 600 mg BID (n=51)
Objective Response Rate	6 (43%)	23 (45%)b
Best Overall Response		
Complete Response (CR)	0 (0%)	0 (0%)
Partial Response (PR)	6 (43%)	23 (45%)
Stable Disease (SD)	8 (57%)	26 (51%)
Progressive Disease (PD)	0 (0%)	1 (2%)
Not Evaluable (NE)	0 (0%)	1 (2%) ^c
Disease control	14 (100%)	49 (96%)

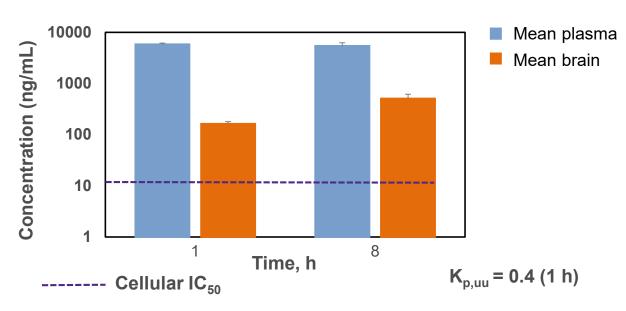
^aBased on investigator assessment of the clinically evaluable patients (measurable disease with ≥1 on-study scan); 14/18 patients (Phase 1/1b) and 51/79 patients (Phase 1/1b and 2 pooled) met these criteria. ^bAt the time of the 30 August 2020 data cut off, 5 patients had unconfirmed PRs. All 5 were confirmed by scans that were performed after the 30 August 2020 data cut off. ^cOne patient had tumor reimaging too early for response assessment.


Adagrasib 600 mg BID in Patients With NSCLC: Best Tumor Change From Baseline

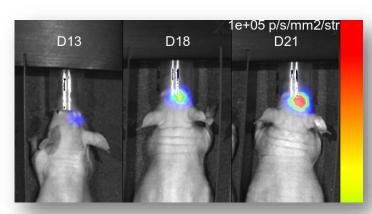
Clinical benefit (DCR) observed in 96.1% (49/51) of patients


^aTwo timepoint assessments of CR were separated by recurrent disease associated with treatment interruption due to hypoxia; this patient remains on treatment and in two consecutive scans (1 after August 30 data cutoff) demonstrated 100% tumor regression in target and non-target lesions after resuming treatment.

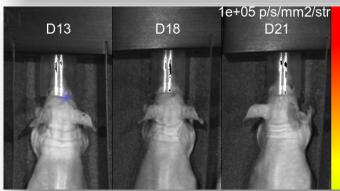
Adagrasib 600 mg BID in Patients With NSCLC: Treatment Duration and Change in Tumor Burden


- Median follow-up, 9.6 mo
- 5 of the 6 responders remain on treatment; treatment ongoing >11 mo for the majority of patients with responses (4/6)
- Median time to response, 1.5 mo

Duration of Treatment in Patients With NSCLC Treated With Adagrasib 600 mg BID in Pooled Dataset


Adagrasib Penetrates the Brain/CSF and Results in Tumor Regression in a Preclinical Model^a

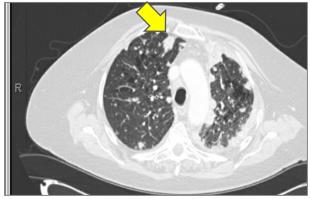
Mean Plasma and Brain Concentrations of Adagrasib After a Single 100 mg/kg Oral Dose in Mice



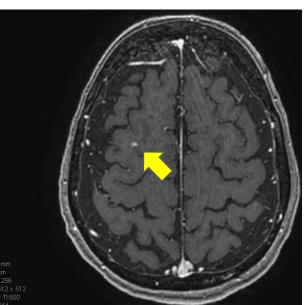
LU99Luc KRAS^{G12C} Brain Metastases Model

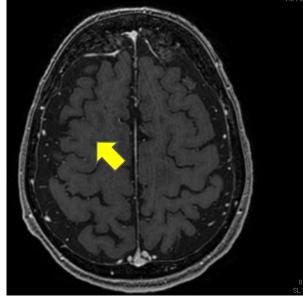
Vehicle

Adagrasib 100 mg/kg BID

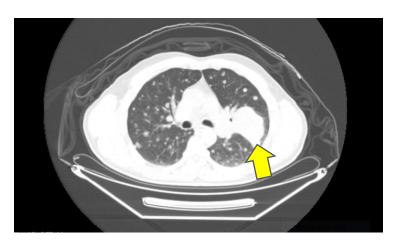


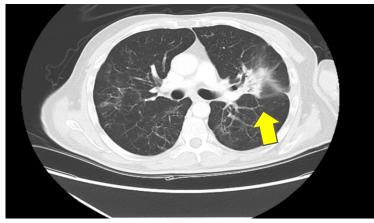
- Adagrasib demonstrates dose-dependent brain and CSF exposure in preclinical studies
- A single 100 mg/kg oral dose in mice results in brain concentrations exceeding the cellular IC₅₀ of adagrasib
- Plasma levels achieved at 100 mg/kg BID in mice are comparable to levels achieved at a 600 mg BID human dose and results in near complete tumor regression in LU99Luc KRAS^{G12C} tumors


Patient Case: Patient With Brain Metastasis and KRAS^{G12C} Mutation

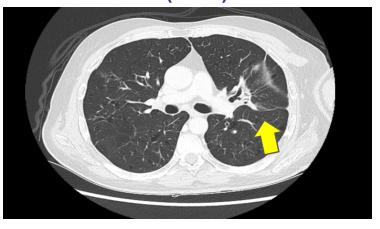

Baseline

Adagrasib 600 mg BID, Cycle 7 PR, (-67%)

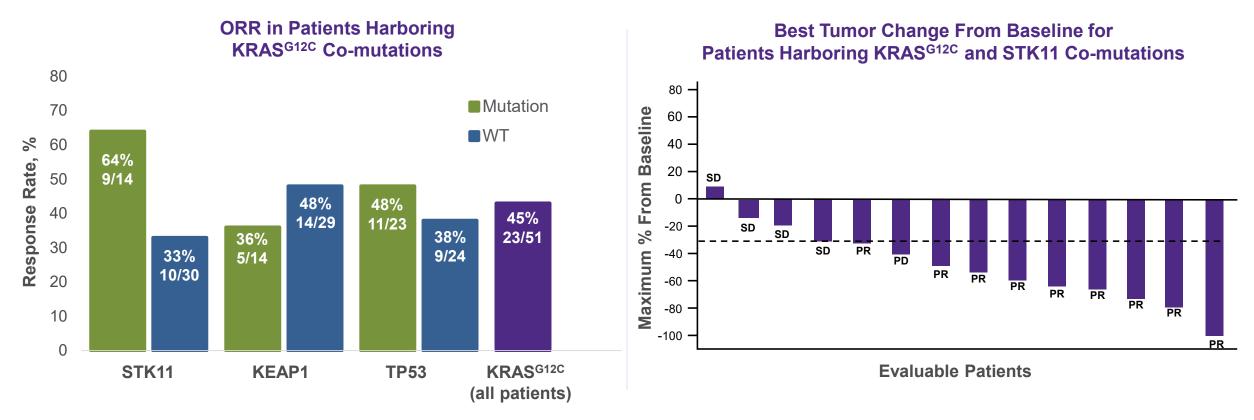



- 77-year-old female previous smoker
- NSCLC diagnosed, April 2019
- Only mutation identified by NGS panel: KRAS^{G12C}
- Treatment history
 - Carboplatin, pemetrexed, pembrolizumab, May-July 2019
 - Pemetrexed maintenance, August-December 2019
 - Left frontal brain met radiation, November 2019
 - Pembrolizumab maintenance, January-February 2020
 - Pemetrexed, March 2020
 - Left and right cerebellar radiation, March 2020
- Patient started adagrasib 600 mg BID, May 2020
- Metastases were in the lung and liver and an unirradiated brain lesion in the right middle frontal gyrus
- TRAEs
 - Grade 1 nausea, vomiting, diarrhea, dysphagia, anemia, rash, and thigh discomfort
- Currently in cycle 7

Patient Case: Response in NSCLC Harboring KRAS^{G12C} and STK11 Co-Mutations


Baseline

Adagrasib 600 mg BID, Cycle 6 PR (-56%)



Adagrasib 600 mg BID, Cycle 10 PR (-59%)

- 53-year-old male former smoker; NSCLC diagnosed, December 2018
- KRAS^{G12C} and STK11^{N41*} mutations detected by NGS
- Treatment history
 - Radiotherapy to brain, December 2018
 - Carboplatin, pemetrexed, pembrolizumab, January-April 2019 with BOR of SD
 - Radiotherapy to brain, March-April 2019
 - Pemetrexed with pembrolizumab as continuation maintenance through September 2019
 - LMB-100 (investigational agent) with pembrolizumab, October-December 2019
- Patient started adagrasib 600 mg BID in February 2020
- No TRAEs
- Patient remains on study

Preliminary Exploratory Correlative Analysis of Co-Mutations Including STK11 With KRAS^{G12C} and Response Rate in Patients with NSCLC Treated with Adagrasib

- Baseline NGS reports reviewed for exploratory correlative analysis for all NSCLC patients with available mutation data^a
- 64% ORR in patients with tumors harboring STK11 and KRAS^{G12C} mutations
- No apparent trend with KEAP1, TP53, or other common mutations and response rate

^aAnalysis includes key mutations detected at baseline in tumor and/or plasma that commonly occur with KRAS^{G12C}. Mutations included as positive include, nonsense, frameshift, splice site, and recurrent mutations predicted to have deleterious impact, and excluded VUS.

Data as of 30 August 2020. Based on unaudited data.

Conclusions

- Adagrasib is a KRAS^{G12C}-selective covalent inhibitor with a long half-life, and extensive predicted target coverage throughout the dosing interval
- Adagrasib is well tolerated
- Adagrasib provides durable benefit to patients with NSCLC harboring KRAS^{G12C} mutations
 - Durable responses were observed
 - Broad disease control rate was observed
- In a preliminary exploratory genomic analysis, ORR was higher in patients with tumors harboring KRAS^{G12C} and STK11 co-mutations
- Pembrolizumab combination (NSCLC) arm has cleared the DLT observation period and enrollment in Phase 1b expansion at full dose of each agent is ongoing^a
- Combination clinical trials are enrolling or planned in NSCLC with afatinib^a, TNO155^b (SHP2-inhibitor), and palbociclib

Responses observed in CRC (n=3/18; 17%), and in patients with pancreatic, ovarian, and endometrial cancers, and cholangiocarcinoma See Johnson ML et al., abstract LBA-04.

Acknowledgements

- The patients and their families who make this trial possible
- The clinical study teams for their work and contributions
- This study is supported by Mirati Therapeutics, Inc.
- All authors contributed to and approved this presentation; writing and editorial assistance were provided by Robin Serody of Axiom Healthcare Strategies, funded by Mirati Therapeutics, Inc.

Investigators

Harshad Amin

Boca Raton Clinical Research Global USA

Daniel Anderson

Metro-Minnesota Community
Oncology Research Consortium

Minal Barve

Mary Crowley Cancer Center

Bruno R. Bastos

Miami Cancer Institute and Baptist Health of South Florida

Lyudmila Bazhenova

Moores Cancer Center, University of California San Diego

Tanios Bekaii-Saab

Mayo Clinic

David Berz

Beverly Hills Cancer Center

Alberto Bessudo

California Cancer Associates for Research and Excellence

Alejandro Calvo

Kettering Cancer Center

Patrick Cobb

Sisters of Charity of Leavenworth Health St. Mary's

Mike Cusnir

Mount Sinai Comprehensive Cancer Center

Keith Eaton

Seattle Cancer Care Alliance

Yousuf Gaffar

Maryland Oncology Hematology

Navid Hafez

Yale Cancer Center

David Hakimian

Illinois Cancer Specialists

Rebecca S. Heist

Massachusetts General Hospital

Pasi A Jänne

Dana-Farber Cancer Institute

Melissa L. Johnson

Sarah Cannon Research Institute Tennessee Oncology

Han Koh

Kaiser Permanente

Scott Kruger

Virginia Oncology Associates

Timothy Larson

Minnesota Oncology

Ticiana A. Leal

University of Wisconsin Carbone Cancer Center

Konstantinos Leventakos

Mayo Clinic

Yanyan Lou

Mayo Clinic

Steven McCune

Northwest Georgia Oncology Centers

Jamal Misleh

Medical Oncology Hematology Consultants

Suresh Nair

Lehigh Valley Physician Group

Sujatha Nallapareddy

Rocky Mountain Cancer Center

Marcelo Negrao

MD Anderson Cancer Center

Gregg Newman

Ridley-Tree Cancer Center

Sai-Hong Ignatius Ou

University of California, Irvine, Chao Family Comprehensive Cancer Center

Rami Owera

Woodlands Medical Specialists

Jose M. Pacheco

University of Colorado Anschutz Medical Campus

Kyriakos P. Papadopoulos

START Center for Cancer Care

David Park

Virginia K. Crosson Cancer Center

Scott Paulson

Texas Oncology, USOR

Nathan Pennell

Cleveland Clinic Lerner College Of Medicine

Muhammad Riaz

University of Cincinnati Health Barrett Cancer Center

Donald Richards

Texas Oncology, USOR

Gregory J. Riely

MSKCC, Weill Cornell Medical College

Francisco Robert

University of Alabama at Birmingham School of Medicine

Richard Rosenberg

Arizona Oncology

Peter Rubin

MaineHealth Cancer Care

Robert Ruxer

Texas Oncology

Igor I. Rybkin

Henry Ford Cancer Institute

Joshua Sabari

New York University Langone Health, New York University Perlmutter Cancer Center

Alexander I. Spira

Virginia Cancer Specialists, US Oncology Research

Caesar Tin-U

Texas Oncology

Anthony Van Ho

Compass Oncology

Jared Weiss

Lineberger Comprehensive Cancer Center, University of North Carolina

John Wrangle

Medical University of South Carolina

Edwin Yau

Roswell Park Comprehensive Cancer Center

Jeffrey Yorio

Texas Oncology

Jun Zhang

University of Kansas Medical Center

Abbreviations

BID = twice daily

C_{ave} = average drug plasma concentration

CBR = clinical benefit rate

CRC = colorectal cancer

CSF = cerebrospinal fluid

DCR = disease control rate

DLT = dose limiting toxicity

DOR = duration of response

ECOG = Eastern Cooperative Oncology Group

MTD = maximum tolerated dose

nM = nanomolar

NE = not evaluable

NGS = next-generation sequencing

NSCLC = non-small-cell lung cancer

ORR = objective response rate

OS = overall survival

PD = progressive disease

PFS = progression-free survival

PK = pharmacokinetics

PR = partial response

PS = performance status

QD = once daily

RP2D = recommended Phase 2 dose

SAE = serious adverse event

SD = stable disease

TRAE = treatment-related adverse event

uPR = unconfirmed partial response

VUS = variant of unknown significance