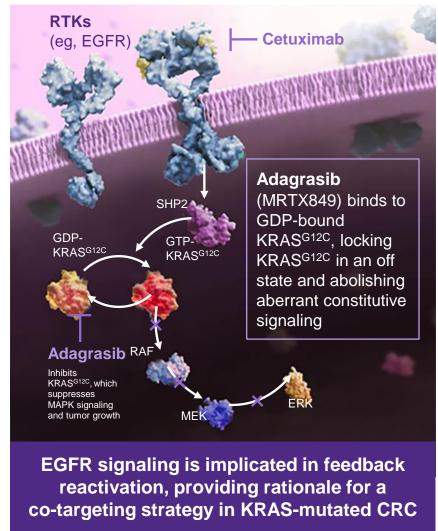


KRYSTAL-1: Updated Efficacy and Safety of Adagrasib (MRTX849) With or Without Cetuximab in Patients With Advanced Colorectal Cancer (CRC) Harboring a KRAS^{G12C} Mutation

Samuel J. Klempner¹, Jared Weiss², Meredith S. Pelster³, Alexander I. Spira⁴, Minal Barve⁵, Sai-Hong Ignatius Ou⁶, Ticiana A. Leal⁷, Tanios S. Bekaii-Saab⁸, James G. Christensen⁹, Thian Kheoh⁹, Karen Velastegui⁹, Hirak Der-Torossian⁹, Rona Yaeger¹⁰

¹Massachusetts General Cancer Center, Boston, Massachusetts, USA; ²University of North Carolina-Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA; ³Sarah Cannon Research Institute, Tennessee Oncology, Nashville, Tennessee, USA; ⁴Virginia Cancer Specialists, US Oncology Research, Fairfax, Virginia, USA; ⁵Mary Crowley Cancer Research, Dallas, TX, USA; ⁶University of California Irvine, Chao Family Comprehensive Cancer Center, Orange, CA, USA; ⁷Winship Cancer Institute, Emory University, Atlanta, GA, USA; ⁸Department of Medical Oncology and Hematology, Mayo Clinic, Scottsdale, Arizona, USA; ⁹Mirati Therapeutics, Inc., San Diego, CA, USA; ¹⁰Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA



Disclosures

- Consulting/Advisory Board: Astellas, BMS, Merck, Lilly, Exact Sciences, Mersana, Pieris, Daiichi-Sankyo, AstraZeneca, Novartis
- Stock Ownership: Turning Point Therapeutics
- Research Funding (institutional): Leap Therapeutics, Silverback Therapeutics, Astellas

Adagrasib (MRTX849) is a Differentiated KRAS^{G12C} Inhibitor

- KRAS^{G12C} mutations act as oncogenic drivers, occur in ~3–4% of CRC, and are a negative predictor of cetuximab efficacy^{1–4}
- KRAS^{G12C} mutations are associated with poor prognosis compared with other KRAS mutations in patients with CRC,⁵ and late-line treatment options are limited⁶
- Adagrasib exhibits desired properties of a KRAS^{G12C} inhibitor, including a long half-life (23 hours), dose-dependent PK and CNS penetration^{7,8}
- Combining adagrasib with cetuximab may enhance inhibition of KRAS-dependent signaling or overcome adaptive feedback⁹
- Clinical activity with adagrasib has been shown in patients across 9 KRAS^{G12C}-mutated solid tumor types^{8,10–12}

KRYSTAL-1 (849-001) Phase 1b/2 CRC Cohorts Study Design

Key Eligibility Criteria

- CRC with a KRAS^{G12C} mutation^a
- Unresectable or metastatic disease
- Prior systemic treatment for metastatic disease
- No available treatment with curative intent or available standard of care

Phase 1b
CRC Combination

Adagrasib 600 mg BID^b + cetuximab^c (n=32) Phase 2
CRC Monotherapy

Adagrasib 600 mg BID^b (n=44)

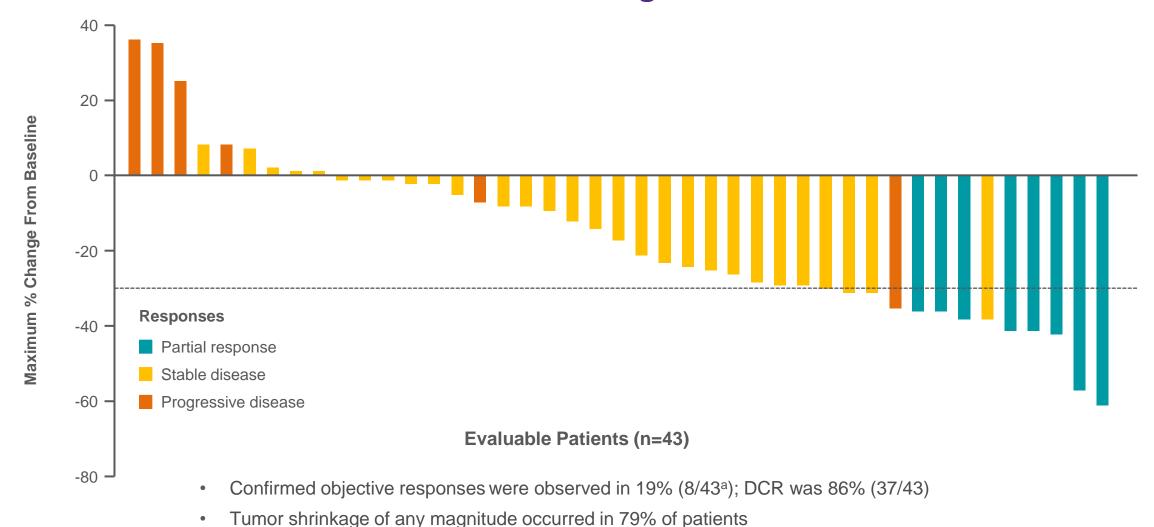
Study Objectives

Phase 1b

- Primary endpoints: safety, RP2D, PK
- Secondary endpoints: ORR (RECIST 1.1), DOR, PFS, OS

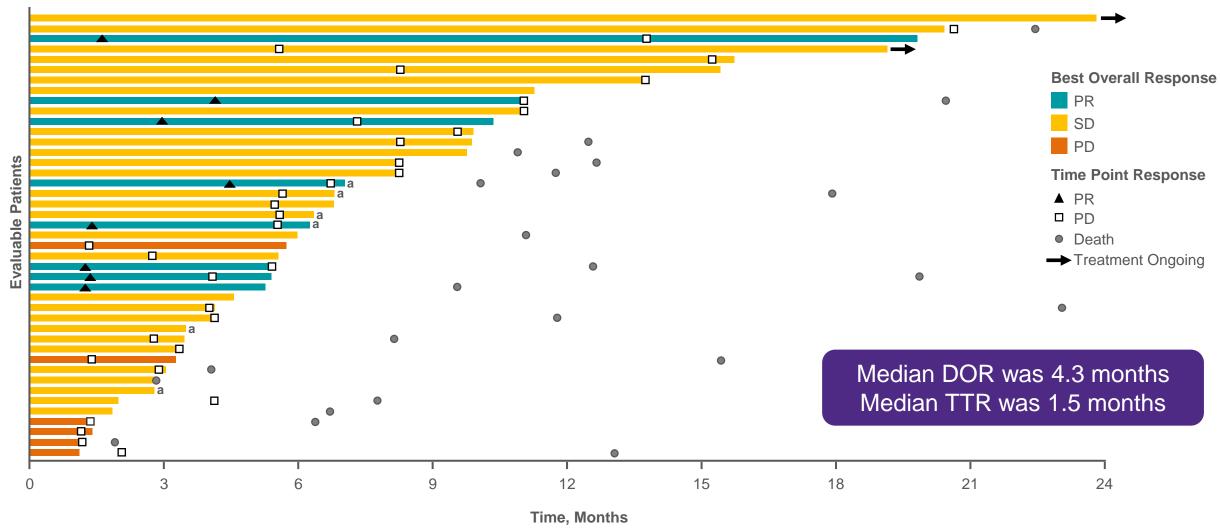
Phase 2

- Primary endpoint: ORR (RECIST 1.1)^d
- Secondary endpoints: safety, DOR, PFS, OS
- Previously reported data demonstrated clinical activity of adagrasib monotherapy and adagrasib + cetuximab in patients with previously treated KRAS^{G12C}-mutated CRC^{10,e}
- Here we report updated data for adagrasib 600 mg BID as monotherapy (Phase 2; median follow-up: 20.1 months) and in combination with cetuximab (Phase 1b; median follow-up: 17.5 months) in patients with previously treated KRAS^{G12C}-mutated CRC


aKRAS^{G12C} mutation detected in tumor tissue and/or ctDNA per protocol. ^bCapsule, fasted. ^cCetuximab dosing, 400 mg/m² followed by 250 mg/m² QW, or 500 mg/m² QW. ^dResponse was analysed in the clinically evaluable population with local radiology review. ^ePrevious data were reported for 46 patients (n=2 in Phase 1/1b and n=44 in Phase 2) receiving adagrasib monotherapy (median follow-up: 8.9 months) and 32 patients receiving adagrasib + cetuximab (median follow-up: 7 months)¹⁰

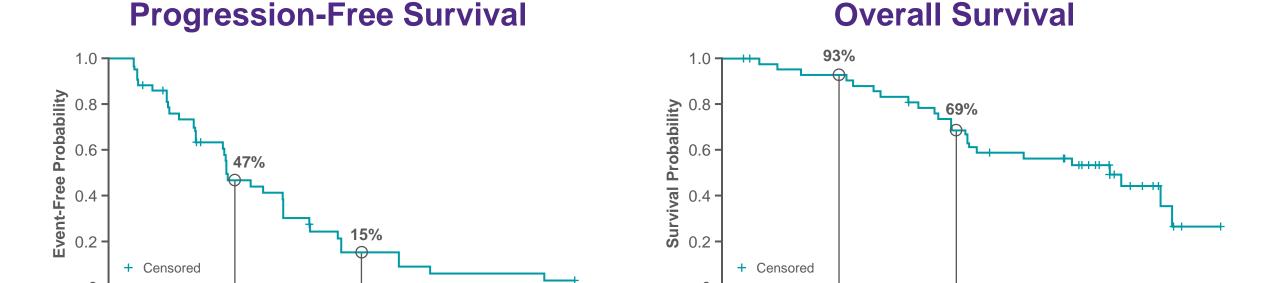
ClinicalTrials.gov. NCT03785249

Demographics and Baseline Characteristics


	Adagrasib Monotherapy (n=44)	Adagrasib + Cetuximab (n=32)
Median age, y (range)	59 (29–79)	60 (41–74)
Female, n (%)	22 (50%)	17 (53%)
Race, n (%)		
White	33 (75%)	26 (81%)
Black	6 (14%)	4 (13%)
Asian	3 (7%)	2 (6%)
Other	2 (5%)	0 (0%)
ECOG PS, n (%)		
0	23 (52%)	14 (44%)
1	21 (48%)	18 (56%)
Prior lines of systemic anticancer therapy,		
median (range)	3 (1–9)	3 (1–8)
Prior lines of systemic anticancer therapy, %		
1 / 2 / 3 / ≥4	18% / 21% / 25% / 36%	9% / 25% / 34% / 31%
Prior systemic anticancer therapy, %		
Fluoropyrimidine / oxaliplatin / irinotecan	100% / 98% / 80%	100% / 100% / 88%
Anti-VEGF	82%	88%
Anti-EGFR biological therapy	2%	0%
Regorafenib and/or trifluridine/tipiracil	23%	19%

Adagrasib Monotherapy in Previously Treated Patients with KRAS^{G12C}-Mutated CRC: Best Tumor Change From Baseline

^aResponse per investigator assessment (n=43; one patient withdrew consent prior to the first scan)
Data as of June 16, 2022 (median follow-up, 20.1 months)


Adagrasib Monotherapy in Previously Treated Patients with KRAS^{G12C}-Mutated CRC: Duration of Treatment

^aPatients who crossed over to receive adagrasib + cetuximab; data are summarized prior to crossover Response outcomes per investigator assessment

Data as of June 16, 2022 (median follow-up, 20.1 months)

Adagrasib Monotherapy in Previously Treated Patients with KRAS^{G12C}-Mutated CRC: Progression-Free Survival and Overall Survival

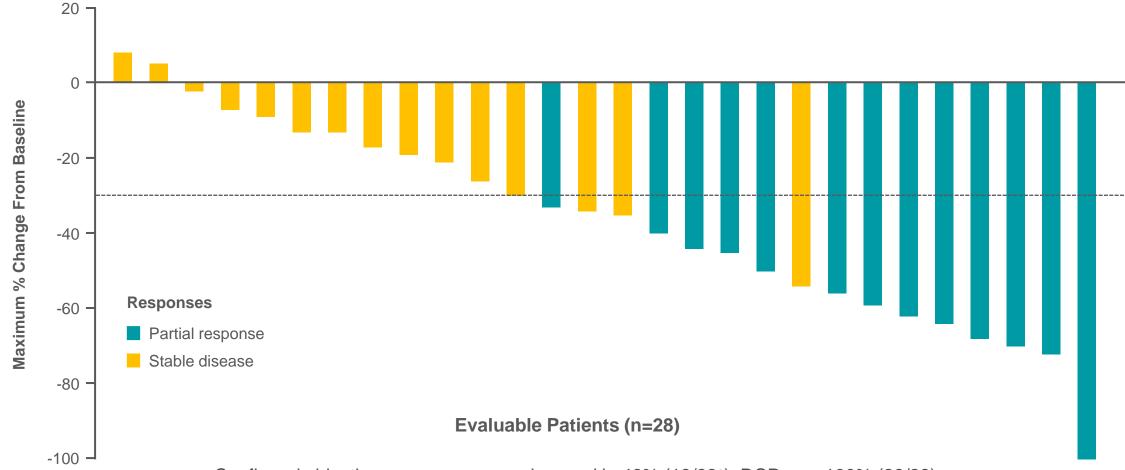
No. at risk 44

Median PFS was 5.6 months (95% CI, 4.1–8.3)

Time, Months

Median OS was 19.8 months (95% CI, 12.5–23.0)

Time, Months


No. at risk

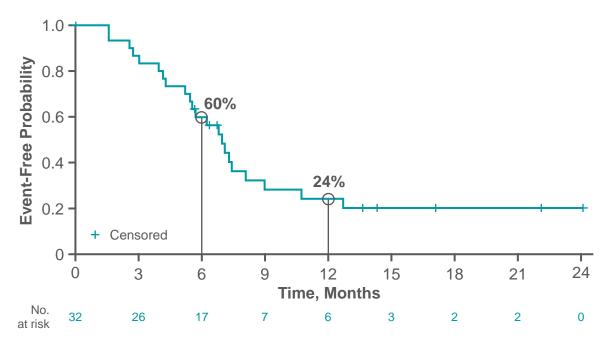
Adagrasib Monotherapy in Previously Treated Patients with KRAS^{G12C}-Mutated CRC: Treatment-Related Adverse Events

Most Frequent TRAEs	Adagrasib Monotherapy (n=44)			
TRAEs, %	Any grade	Grade 1	Grade 2	Grade 3
Any TRAEs ^a	93%	23%	36%	30%
Most frequent TRAEs ^b , %				
Diarrhea	66%	36%	23%	7%
Nausea	57%	34%	23%	0
Fatigue	46%	25%	16%	5%
Vomiting	46%	27%	18%	0
Decreased appetite	18%	9%	9%	0
Anemia	16%	5%	2%	9%
QT prolongation	16%	5%	7%	5%
Peripheral edema	16%	14%	2%	0

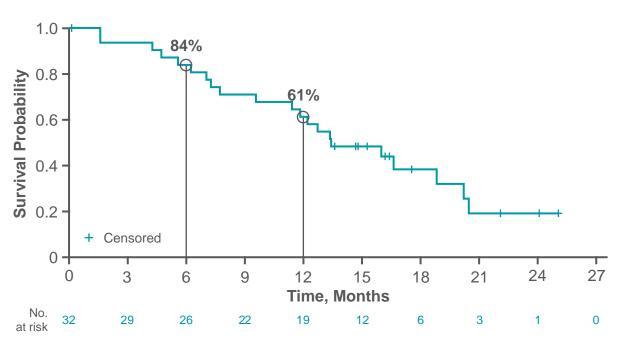
- 2 Grade 4 TRAEs (pericardial effusion, n=1; decreased neutrophil count, n=1); no Grade 5 TRAEs
- No TRAEs that led to discontinuation
- TRAEs led to adagrasib dose reduction in 39% (17/44) and to adagrasib interruption in 46% (20/44)

Adagrasib + Cetuximab in Previously Treated Patients with KRAS^{G12C}-Mutated CRC: Best Tumor Change From Baseline

- Confirmed objective responses were observed in 46% (13/28a); DCR was 100% (28/28)
- Tumor shrinkage of any magnitude occurred in 93% of patients


^aResponse per investigator assessment (n=28; four patients are not included due to no post-baseline assessment of target lesions) Data as of June 16, 2022 (median follow-up, 17.5 months)

Adagrasib + Cetuximab in Previously Treated Patients with KRAS^{G12C}-Mutated CRC: Duration of Treatment



Adagrasib + Cetuximab in Previously Treated Patients with KRAS^{G12C}-Mutated CRC: Progression-Free Survival and Overall Survival

Progression-Free Survival

Overall Survival

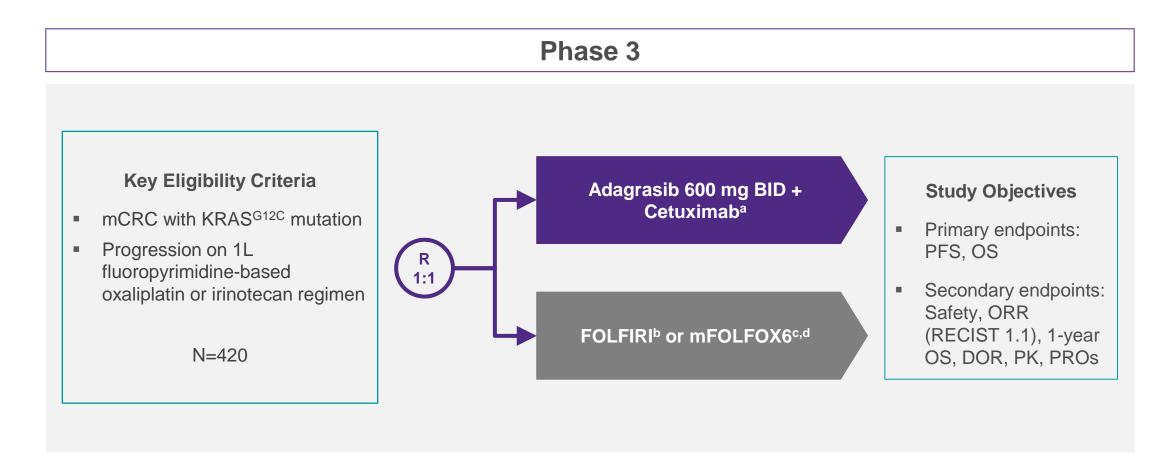
Median PFS was 6.9 months (95% CI, 5.4–8.1)

Median OS was 13.4 months (95% CI, 9.5–20.1)

Adagrasib + Cetuximab in Previously Treated Patients with KRAS^{G12C}-Mutated CRC: Treatment-Related Adverse Events

Most Frequent TRAEs	Adagrasib + Cetuximab (n=32)			
TRAEs, %	Any grade	Grade 1	Grade 2	Grade 3
Any TRAEs ^a	100%	16%	69%	9%
Most frequent TRAEsb, %				
Nausea	63%	41%	22%	0
Diarrhea	56%	34%	19%	3%
Vomiting	53%	41%	13%	0
Dermatitis acneiform	47%	34%	9%	3%
Fatigue	47%	25%	22%	0
Dry skin	41%	34%	6%	0
Headache	31%	22%	9%	0
Dizziness	25%	13%	13%	0
Rash maculopapular	25%	22%	3%	0
Stomatitis	22%	16%	3%	3%

- 2 Grade 4 TRAEs (cetuximab-related infusion-related reaction, n=1; hyperkalemia, n=1); no Grade 5 TRAEs
- 16% (5/32) of TRAEs led to discontinuation of cetuximab^c. No TRAEs led to discontinuation of adagrasib
- TRAEs led to adagrasib dose reduction in 31% (10/32) and to adagrasib interruption in 44% (14/32)


^aBy maximum grade. ^bOccurring in >20% of patients (any grade). ^cTRAEs leading to cetuximab discontinuation were treatment-related cetuximab-related infusion-related reaction (n=3), malaise (n=1) and vascular flushing (n=1)

Conclusions

- KRAS^{G12C} mutations are associated with poor prognosis in metastatic CRC, and late-line treatment options for these patients are limited
- Adagrasib ± cetuximab demonstrated encouraging clinical activity in heavily pretreated patients with metastatic CRC harboring a KRAS^{G12C} mutation
 - Adagrasib + cetuximab resulted in a numerically higher response rate and longer mPFS than adagrasib monotherapy (combination: ORR 46%; DCR 100%; mPFS 6.9 months)
- Adagrasib ± cetuximab is tolerable and has a manageable safety profile
- Adagrasib + cetuximab is being evaluated in patients with KRAS^{G12C}-mutated mCRC in the 2L setting in KRYSTAL-10 (Phase 3, NCT04793958) and late-line setting in KRYSTAL-1 (potentially registration-enabling phase 2 cohort, NCT03785249)

KRYSTAL-10 (849-010) Global, Phase 3, Randomized, Open-Label Trial of 2L Adagrasib + Cetuximab vs Chemotherapy in mCRC With KRAS^{G12C} Mutation

^aDosing: cetuximab, 500 mg/m² Q2W. ^bFOLFIRI Q2W (irinotecan, 180 mg/m², 5-FU/LV with fluorouracil given as a 400-mg/m² IV bolus followed by a 2400 mg/m² dose given as a continuous infusion over 46–48 hours). ^cmFOLFOX6 Q2W (oxaliplatin, 85 mg/m², 5-FU/LV, with fluorouracil given as a 400-mg/m² IV bolus followed by a 2400 mg/m² dose given as continuous infusion over 46–48 hours) ^dA VEGF/VEGFR inhibitor may be given per investigator discretion ClinicalTrials.gov NCT04793958

Acknowledgments

- The patients and their families who made this trial possible
- The clinical study teams and investigators for their work and contributions
- This study is supported by Mirati Therapeutics, Inc.
- All authors contributed to and approved this presentation; third party medical writing and editorial
 assistance were provided by Victoria Eyre-Brook, PhD, of Ashfield MedComms, an Inizio company,
 funded by Mirati Therapeutics, Inc.

Investigators

Daniel Anderson

Metro-Minnesota Community Oncology Research Consortium

Minal Barve

Mary Crowley Cancer Research

Lyudmila Bazhenova

Moores Cancer Center, University of California San Diego

Tanios Bekaii-Saab

Mayo Clinic

David Berz

Beverly Hills Cancer Center

Patrick Cobb

Sisters of Charity of Leavenworth Health St. Mary's

Marcia Cruz-Correa

Pan American Center for Oncology Trials

Muhammad Furqan

University of Iowa

Shirish Gadgeel

Henry Ford Cancer Institute / Henry Ford Health System

Yousuf Gaffar

Maryland Oncology Hematology

Navid Hafez

Yale Cancer Center

David Hakimian

Illinois Cancer Specialists

Rebecca S. Heist

Massachusetts General Hospital

Pasi A Jänne

Dana-Farber Cancer Institute

Melissa L. Johnson

Sarah Cannon Research Institute, Tennessee Oncology

Han Koh

Kaiser Permanente

Ticiana A. Leal

University of Wisconsin Carbone Cancer Center

Konstantinos Leventakos

Mayo Clinic

Yanyan Lou

Mayo Clinic

Suresh Nair

Lehigh Valley Physician Group

Misako Nagasaka

Karmanos Cancer Institute

Gregg Newman

Ridley-Tree Cancer Center

Sai-Hong Ignatius Ou

University of California, Irvine, Chao Family Comprehensive Cancer Center

Jose M. Pacheco

University of Colorado Anschutz Medical Campus

Kyriakos P. Papadopoulos

START Center for Cancer Care

Muhammad Riaz

University of Cincinnati Health Barrett Cancer Center

Donald Richards

Texas Oncology

Gregory J. Riely

Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College

Richard Rosenberg

Arizona Oncology

Joshua Sabari

New York University Langone Health, New York University Perlmutter Cancer Center

Alexander I. Spira

Virginia Cancer Specialists, US Oncology Research

Jared Weiss

Lineberger Comprehensive Cancer Center, University of North Carolina

Ralph Zinner

University of Kentucky

References

- 1. Nassar AH, et al. N Engl J Med. 2021;384(2):185–7
- 2. Schirripa M, et al. Clin Colorectal Cancer. 2020;S1533-0028(20)30067-0
- 3. NIH TCGA: The Cancer Genome Atlas. February 11, 2021; https://www.cbioportal.org
- 4. Modest DP, et al. Oncology. 2012;83:241–7
- 5. Henry JT, et al. JCO Precis Oncol. 2021;5
- 6. Walter T, et al. J Cancer Res Clin Oncol. 2020;146(10):2575-87
- 7. Hallin J, et al. Cancer Discov. 2020;10(1):54-71
- 8. Jänne PA, et al. N Engl J Med. 2022;387:120-31
- 9. Tabernero J, et al. Presented at 23rd World Congress on Gastrointestinal Cancer; June 30-July 3, 2021; virtual
- 10. Weiss J, et al. Presented at 2021 ESMO Congress; September 19, 2021
- 11. Johnson ML, et al. Presented at 2020 EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics; October 25, 2020
- 12. Bekaii-Saab TS, et al. Presented at 2022 ASCO Gastrointestinal Cancers Symposium; January 21, 2022

Abbreviations

5-FU, 5-fluorouracil

1L, first line

2L, second line

BID, twice daily

CI, confidence interval

CNS, central nervous system

CR, complete response

CRC, colorectal cancer

ctDNA, circulating tumor DNA

DCR, disease control rate

DOR, duration of response

ECOG, Eastern Cooperative Oncology Group

EGFR, epidermal growth factor receptor

ERK, extracellular signal-regulated kinase

FOLFIRI, folinic acid (leucovorin), fluorouracil, irinotecan

FOLFOX6, folinic acid (leucovorin), fluorouracil, oxaliplatin

GDP, guanosine diphosphate

GTP, guanosine triphosphate

IV, intravenous

KRAS, Kirsten rat sarcoma virus

LV, leucovorin

MAPK, mitogen-activated protein kinase

MEK, mitogen-activated protein kinase kinase

mCRC, metastatic colorectal cancer

mPFS, median progression-free survival

ORR, objective response rate

OS, overall survival

PD, progressive disease

PFS, progression-free survival

PK, pharmacokinetics

PR, partial response

PROs, patient-reported outcomes

PS, performance status

QW, every week

Q2W, every 2 weeks

R. randomized

RECIST, Response Evaluation Criteria in Solid Tumors

RP2D, recommended Phase 2 dose

SD, stable disease

SHP2, Src homology phosphatase 2

TRAE, treatment-related adverse event

TTR, time to response

VEGF, vascular endothelial growth factor

VEGFR, vascular endothelial growth factor receptor