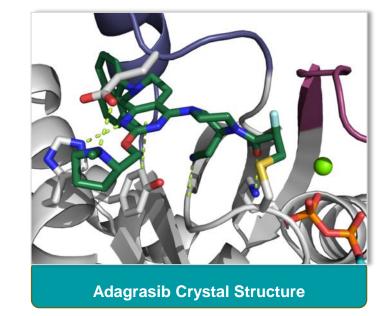


KRYSTAL-1: ACTIVITY AND PRELIMINARY PHARMACODYNAMIC (PD) ANALYSIS OF ADAGRASIB (MRTX849) IN PATIENTS (PTS) WITH ADVANCED NON-SMALL-CELL LUNG CANCER (NSCLC) HARBORING KRAS^{G12C} MUTATION

Gregory J. Riely¹, Sai-Hong Ignatius Ou², Igor I. Rybkin³, Alexander I. Spira⁴, Kyriakos P. Papadopoulos⁵, Joshua K. Sabari⁶, Melissa L. Johnson⁷, Rebecca S. Heist⁸, Lyudmila Bazhenova⁹, Minal Barve¹⁰, Jose M. Pacheco¹¹, Ticiana A. Leal¹², Karen Velastegui¹³, Cornelius Cilliers¹³, Peter Olson¹³, James G. Christensen¹³, Thian Kheoh¹³, Richard C. Chao¹³, Pasi A. Jänne¹⁴

¹Thoracic Oncology Service, Division of Solid Tumor, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA; ²University of California, Irvine, Chao Family Comprehensive Cancer Center, Orange, CA, USA; ³Henry Ford Cancer Institute, Detroit, MI, USA; ⁴Virginia Cancer Specialists, Fairfax, VA, USA; US Oncology Research, The Woodlands, TX, USA; ⁵START Center for Cancer Care, San Antonio, TX, USA; ⁶Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA; ¬Sarah Cannon Research Institute Tennessee Oncology, Nashville, TN, USA; ¬Massachusetts General Hospital, Boston, MA, USA; ¬Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; ¬Mary Crowley Cancer Research, Dallas, TX, USA; ¬Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; ¬USA; ¬USA;

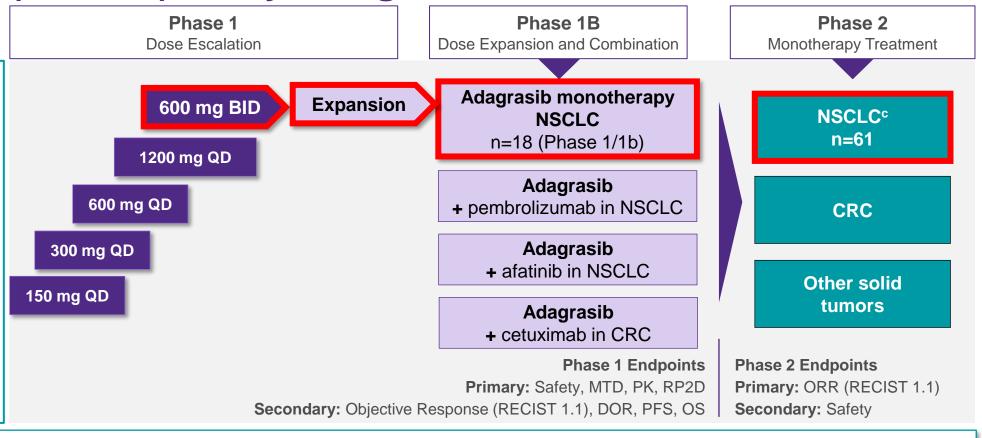
DECLARATION OF INTERESTS


Gregory J. Riely

Institutional research funding from Mirati, Merck, Novartis, Pfizer, Takeda, and Roche

Adagrasib (MRTX849) Is a Differentiated, Selective Inhibitor of KRAS^{G12C}

- KRAS^{G12C} mutations act as oncogenic drivers and occur in approximately 14% of NSCLC (adenocarcinoma)¹⁻³
- The KRAS protein cycles between GTP-on and GDP-off states and has a protein resynthesis half-life of ~24 h^{4,5}
- Adagrasib is a covalent inhibitor of KRAS^{G12C} that irreversibly and selectively binds KRAS^{G12C} in its inactive, GDP-bound state⁶
- Adagrasib was optimized for desired properties of a KRAS^{G12C} inhibitor:
 - Potent covalent inhibitor of KRAS^{G12C} (cellular IC₅₀: ~5 nM)
 - High selectivity (>1000X) for the mutant KRAS^{G12C} protein vs wild-type KRAS
 - Favorable PK properties, including oral bioavailability, long half-life (~24 h),
 and extensive tissue distribution



Hypothesis: Maintaining continuous exposure of adagrasib above a target threshold enables inhibition of KRAS-dependent signaling for the complete dosing interval and maximizes depth and duration of antitumor activity.

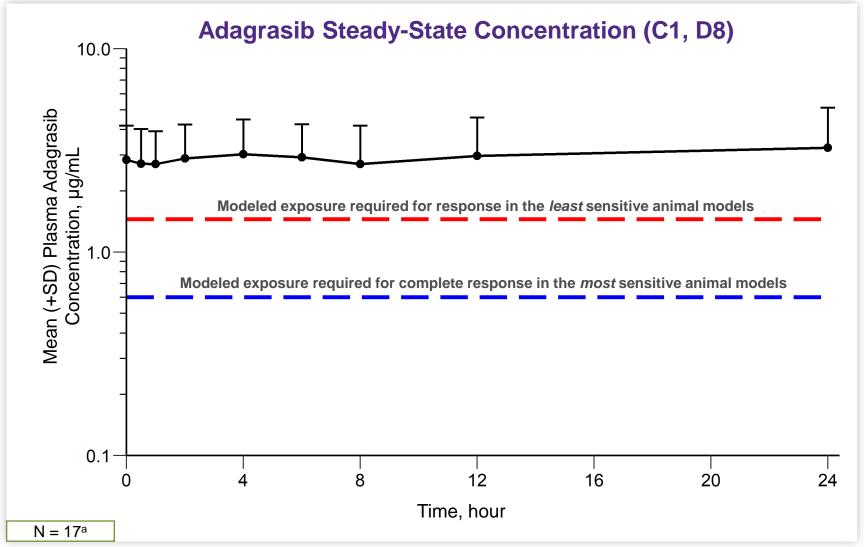
KRYSTAL-1 (849-001) Study Design

Key Eligibility Criteria Up to n=391

- Solid tumor with KRAS^{G12C} mutation
- Unresectable or metastatic disease
- Progression on or following treatment with a PD-1/L1 inhibitor in combination with or following chemotherapy (NSCLC)^a
- Treated and/or stable brain metastases^b

- Here we report data for 79 patients evaluating adagrasib 600 mg BID in patients with previously treated NSCLC in Phase 1/1b (n=18; median follow-up, 9.6 months) and Phase 2 (n=61); pooled (n=79) median follow-up, 3.6 months
- Exploratory data will be presented, including PD markers, gene set enrichment analyses, and immune transcript analyses
- Clinical outcome data cutoff date: 30 August 2020

^aApplies to the majority of NSCLC cohorts. ^bMost cohorts allow patients with brain metastases if adequately treated and stable; additional Phase 1/1b cohort allows limited brain metastases. ^cPrimary NSCLC cohort eligibility based on a tissue test; KRAS^{G12C} testing for entry was performed locally or centrally using a sponsor preapproved test. ClinicalTrials.gov. NCT03785249.

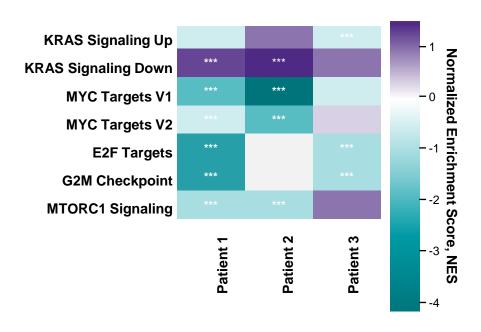

Patient Demographics and Baseline Characteristics: NSCLC

	Phase 1/1b 600 mg BID (n=18)	Phase 1/1b and 2 600 mg BID (n=79)
Median age, y (range)	65 (40-76)	65 (25-85)
Female, n (%)	11 (61%)	45 (57%)
Race, n (%)		
White	15 (83%)	67 (85%)
Black	3 (17%)	5 (6%)
Asian	0 (0%)	5 (6%)
Other	0 (0%)	2 (3%)
ECOG PS, n (%)		
0	8 (44%)	17 (22%)
1	10 (56%)	62 (78%)
Current/former smokers	16 (89%)	75 (95%)
Nonsquamous histology, n (%)	18 (100%)	76 (96%)
Prior lines of anticancer therapy ^a , median (range)	3 (1-9)	2 (1-9)
Prior anti-PD-1/L1 inhibitor, n (%)	16 (89%)	73 (92%)

^aPhase 2 patients with NSCLC received prior treatment with platinum regimens.

Data as of 30 August 2020. The pooled dataset includes data from the NSCLC Phase 1/1b and Phase 2 600 mg BID cohorts.

Adagrasib at 600 mg BID Exhibits Favorable PK Properties; Exposure Maintained Above Target Plasma Thresholds Throughout Full Dosing Interval



PK Properties Summary:

- C_{ave} of 2.63 µg/mL is 2- to 5fold above target threshold for the full dosing interval
- C_{ave} PK parameter best matched to nonclinical antitumor activity
- Low peak to trough ratio at steady state (~1.27)
- Half-life ~ 24 hours
- Extensive volume of distribution predicted based on nonclinical studies

Mechanistic Biomarker Analyses Suggest Downregulation of KRAS/MAPK Pathway Genes in Tumor Tissue from Adagrasib-Treated Patients

Gene Set Enrichment Analysis (GSEA) Post-Adagrasib (Cycle 1, Day 8)

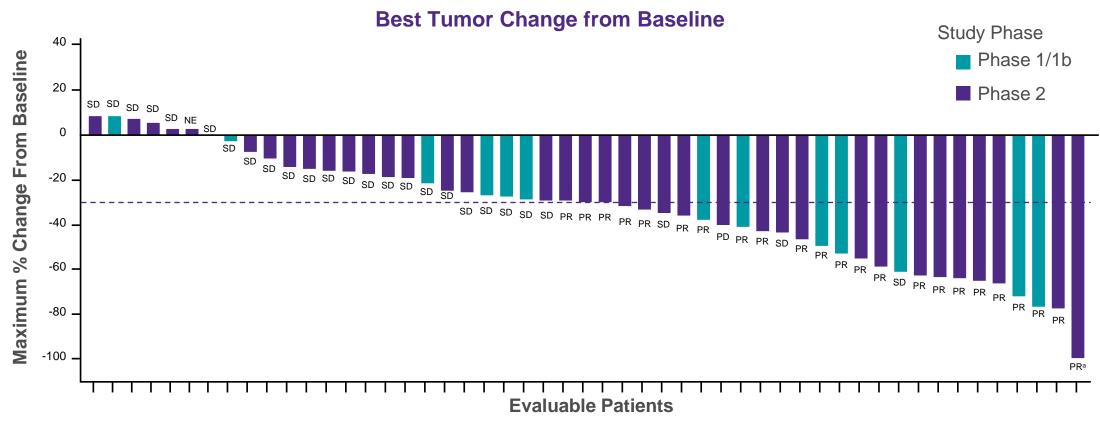
KRAS Signaling Subset–Fold Changes by Patient

- GSEA demonstrated significantly altered hallmark pathways, including MYC, KRAS, E2F, G2M, and MTORC1 in patient tumors
 following adagrasib treatment (n=3 NSCLC)
- MAPK target genes downregulated in several post–adagrasib-treated biopsies
- Robust plasma coverage of KRAS is consistent with evidence of KRAS/ERK pathway inhibition in tumor tissue

Incidence of Treatment-Related Adverse Events

	All Cohorts Pooled, 600 mg BID ^a (n=110)		
TRAEs ^{b,c} , %	Any Grade	Grades 3-4	Grade 5
Any TRAEs	85%	30%	2%
Most frequent TRAEsa,d, %			
Nausea	54%	2%	0%
Diarrhea	51%	0%	0%
Vomiting	35%	2%	0%
Fatigue	32%	6%	0%
Increased ALT	20%	5%	0%
Increased AST	17%	5%	0%
Increased blood creatinine	15%	0%	0%
Decreased appetite	15%	0%	0%
QT prolongation	14%	3%	0%
Anemia	13%	2%	0%

- Grade 5 TRAEs included pneumonitis in a patient with recurrent pneumonitis (n=1) and cardiac failure (n=1)
- 4.5% of TRAEs led to discontinuation of treatment

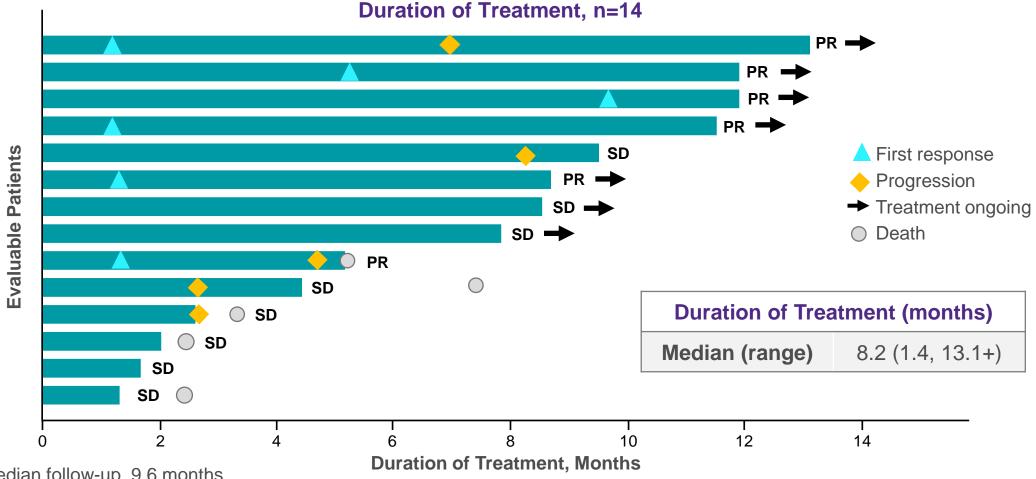

^aIncludes patients pooled from Phase 1/1b and Phase 2 NSCLC (n=79), and CRC and Phase 2 other tumor cohorts (n=31). ^bIncludes events reported between the first dose and 30 August 2020. ^cThe most common treatment-related SAEs reported (2 patients each) reported were diarrhea (grade 1, grade 2) and hyponatremia (both grade 3). ^dOccurred in ≥10%. Data as of 30 August 2020.

Adagrasib in Patients With NSCLC: ORR in Pooled Dataset

Efficacy Outcome ^a , n (%)	Phase 1/1b, NSCLC 600 mg BID (n=14)	Phase 1/1b and 2, NSCLC 600 mg BID (n=51)
Objective Response Rate	6 (43%)	23 (45%)b
Best Overall Response		
Complete Response (CR)	0 (0%)	0 (0%)
Partial Response (PR)	6 (43%)	23 (45%)
Stable Disease (SD)	8 (57%)	26 (51%)
Progressive Disease (PD)	0 (0%)	1 (2%)
Not Evaluable (NE)	0 (0%)	1 (2%) ^c
Disease Control	14 (100%)	49 (96%)

^aBased on investigator assessment of the clinically evaluable patients (measurable disease with ≥1 on-study scan); 14/18 patients (Phase 1/1b) and 51/79 patients (Phase 1/1b and 2 pooled) met these criteria. ^bAt the time of the 30 August 2020 data cutoff, 5 patients had unconfirmed PRs. All 5 PRs were confirmed by scans that were performed after the 30 August 2020 data cutoff. ^cOne patient had tumor reimaging too early for response assessment.

Adagrasib 600 mg BID in Patients With NSCLC: Best Tumor Change From Baseline



Clinical benefit (DCR) observed in 96% (49/51) of patients

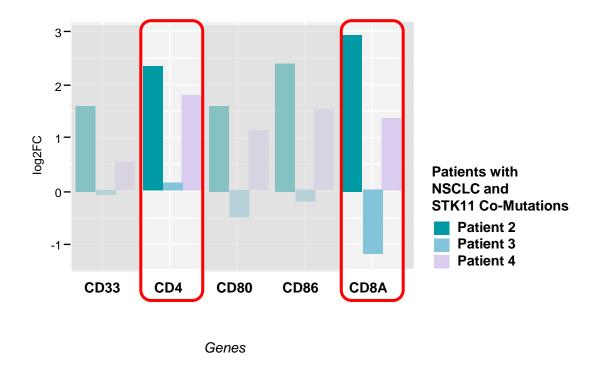
^aTwo timepoint assessments of CR were separated by recurrent disease associated with treatment interruption due to hypoxia; this patient remains on treatment and in 2 consecutive scans (1 after August 30 data cutoff) demonstrated 100% tumor regression in target and nontarget lesions after resuming treatment.


Data as of 30 August 2020. The pooled dataset includes data from NSCLC Phase 1/1b and Phase 2 600 mg BID cohorts.

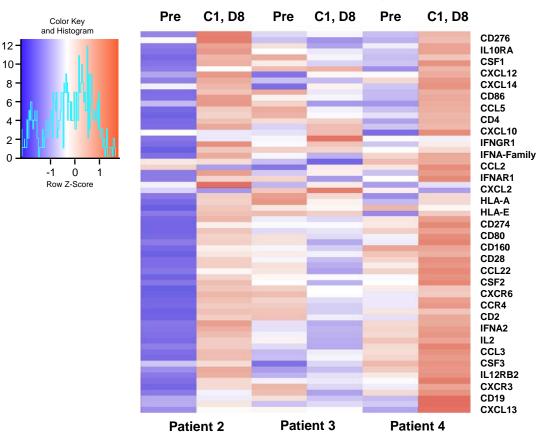
Duration of Treatment in Patients With NSCLC Treated With Adagrasib 600 mg BID in Phase 1/1b

- Median follow-up, 9.6 months
- 5 of the 6 responders remain on treatment; treatment is ongoing for >11 months for the majority of patients with responses (4/6)
- Median time to response, 1.5 months

Preliminary Exploratory Correlative Analysis of Co-Mutations With KRAS^{G12C}, Including STK11, and Response Rate in Patients With NSCLC Treated With Adagrasib


- Baseline NGS reports reviewed for exploratory correlative analysis for all patients with NSCLC with available mutation data
- 64% ORR in patients with tumors harboring KRAS^{G12C} and STK11 co-mutations
- No apparent trend with KEAP1, TP53, or other common mutations and response rate

^aAnalysis includes key mutations detected at baseline in tumor and/or plasma that commonly occur with KRAS^{G12C}. Mutations included as positive include nonsense, frameshift, splice site, and recurrent mutations predicted to have deleterious impact, and excluded variants of unknown significance.


Data as of 30 August 2020. Based on unaudited data.

Tumors Harboring STK11 Co-mutations Were Immune "Cold" at Baseline and Exhibited Increased Immune Response Transcripts After Treatment With Adagrasib

Immune Biology Subset Fold Changes by Patient

Immune Transcripts Pre- and Post-Adagrasib Treatment

- Low expression of immune transcripts in pretreatment tumors with STK11 co-mutations suggests an immune "cold" phenotype
- Increase in immune transcripts and activation of IFN signatures, (eg, CD4, CD8), observed in 2 of 3 patients after adagrasib treatment
- **Hypothesis:** Adagrasib treatment recruits T cells into the tumor and may reverse STK11-mediated immune suppression

Conclusions

- Adagrasib is a KRAS^{G12C}-selective covalent inhibitor with a long half-life and extensive predicted target coverage throughout the dosing interval
- Adagrasib is well tolerated and provides durable responses and broad disease control to patients with NSCLC harboring KRAS^{G12C} mutations
- In an exploratory genomic analysis, ORR was higher in patients with tumors harboring KRAS^{G12C} and STK11 co-mutations
- Initial biomarker analyses post-treatment with adagrasib indicate downregulation of KRAS/MAPK pathway genes and an increase in immune transcripts in patients with STK11 co-mutations
- Adagrasib is being evaluated as 1L monotherapy in patients with NSCLC with KRAS^{G12C} and STK11 co-mutations in a new cohort of KRYSTAL-1

Acknowledgments

- The patients and their families who make this trial possible
- The clinical study teams for their work and contributions
- This study is supported by Mirati Therapeutics, Inc.
- All authors contributed to and approved this presentation; writing and editorial assistance were provided by Andrew Hong of Axiom Healthcare Strategies, funded by Mirati Therapeutics, Inc.

Investigators

Harshad Amin

Boca Raton Clinical Research Global USA

Daniel Anderson

Metro-Minnesota Community
Oncology Research Consortium

Minal Barve

Mary Crowley Cancer Center

Bruno R. Bastos

Miami Cancer Institute and Baptist Health of South Florida

Lyudmila Bazhenova

Moores Cancer Center, University of California San Diego

Tanios Bekaii-Saab

Mayo Clinic

David Berz

Beverly Hills Cancer Center

Alberto Bessudo

California Cancer Associates for Research and Excellence

Alejandro Calvo

Kettering Cancer Center

Patrick Cobb

Sisters of Charity of Leavenworth Health St. Mary's Mike Cusnir

Mount Sinai Comprehensive Cancer Center

Keith Eaton

Seattle Cancer Care Alliance

Yousuf Gaffar

Maryland Oncology Hematology

Navid Hafez

Yale Cancer Center

David Hakimian

Illinois Cancer Specialists

Rebecca S. Heist

Massachusetts General Hospital

Pasi A Jänne

Dana-Farber Cancer Institute

Melissa L. Johnson

Sarah Cannon Research Institute Tennessee Oncology

Han Koh

Kaiser Permanente

Scott Kruger

Virginia Oncology Associates

Timothy Larson

Minnesota Oncology

Ticiana A. Leal

University of Wisconsin Carbone Cancer Center

Konstantinos Leventakos

Mayo Clinic

Yanyan Lou

Mayo Clinic

Steven McCune

Northwest Georgia Oncology Centers

Jamal Misleh

Medical Oncology Hematology Consultants

Suresh Nair

Lehigh Valley Physician Group

Marcelo Negrao

MD Anderson Cancer Center

Gregg Newman

Ridley-Tree Cancer Center

Sai-Hong Ignatius Ou

University of California, Irvine, Chao Family Comprehensive Cancer Center

Rami Owera

Woodlands Medical Specialists

Jose M. Pacheco

University of Colorado Anschutz Medical Campus

Kyriakos P. Papadopoulos START Center for Cancer Care **David Park**

Virginia K. Crosson Cancer Center

Andrew Paulson

Texas Oncology

Muhammad Riaz

University of Cincinnati Health Barrett Cancer Center

Donald Richards

Texas Oncology

Gregory J. Riely

Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College

Francisco Robert

University of Alabama at Birmingham School of Medicine

Richard Rosenberg

Arizona Oncology

Peter Rubin

MaineHealth Cancer Care

Robert Ruxer

Texas Oncology

Igor I. Rybkin

Henry Ford Cancer Institute

Joshua Sabari

New York University Langone Health, New York University Perlmutter Cancer Center Alexander I. Spira

Virginia Cancer Specialists, US Oncology Research

Caesar Tin-U

Texas Oncology

Anthony Van Ho

Compass Oncology

Jared Weiss

Lineberger Comprehensive Cancer Center.

University of North Carolina

John Wrangle

Medical University of South Carolina

Edwin Yau

Roswell Park Comprehensive Cancer Center

Jeffrey Yorio

Texas Oncology

Jun Zhang

University of Kansas Medical Center

References

- 1. Zehir A, Benayed R, Shah RH, et al. Nat Med. 2017;23(6):703-713.
- 2. Schirripa M, Nappo F, Cremolini C, et al. Clin Colorectal Cancer. 2020; S1533-0028(20)30067-0.
- 3. NIH TCGA: The Cancer Genome Atlas. February 11, 2021; https://www.cbioportal.org.
- 4. Bos JL, Rehmann H, Wittinghofer A. Cell. 2007;129: 865-877.
- 5. Shukla S, Allam US, Ahsan A, et al. *Neoplasia*. 2014;16(2):115-128.
- 6. Hallin J, Engstrom LD, Hargis L, et al. Cancer Discov. 2020;10(1): 54-71.
- 7. Jänne PA et al. Presented at 2020 AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; October 25, 2020; virtual.

Abbreviations

ALT = alanine aminotransferase

AST = aspartate aminotransferase

BID = twice daily

C_{ave} = average plasma concentration

CBR = clinical benefit rate

CR = complete response

CRC = colorectal cancer

CSF = cerebrospinal fluid

DCR = disease control rate

DOR = duration of response

ECOG = Eastern Cooperative Oncology Group

 IC_{50} = half maximal inhibitory concentration

IFN = interferon

MTD = maximum tolerated dose

NE = not evaluable

NSCLC = non-small-cell lung cancer

ORR = objective response rate

OS = overall survival

PD = progressive disease

PFS = progression-free survival

PK = pharmacokinetics

PR = partial response

PS = performance status

QD = once daily

RP2D = recommended Phase 2 dose

SAE = serious adverse event

SD = stable disease

TRAE = treatment-related adverse event